Author
Listed:
- Jun Guan
(School of Economics and Management, Northeast Forestry University, Harbin 150040, China)
- Yuwei Guan
(School of Economics and Management, Northeast Forestry University, Harbin 150040, China)
- Xu Liu
(School of Economics and Management, Northeast Forestry University, Harbin 150040, China)
- Shaopeng Zhang
(School of Economics and Management, Northeast Forestry University, Harbin 150040, China)
Abstract
Achieving the synergistic effect of pollution reduction and carbon mitigation (PRCM) is a core pathway for promoting green and low-carbon transition and realizing the “dual carbon” goals, as well as a crucial mechanism for coordinating ecological environment governance with climate action. Based on panel data from three major urban agglomerations (Beijing–Tianjin–Hebei, Yangtze River Delta, and Pearl River Delta) between 2008 and 2019, this study employs network centrality and structural holes to characterize urban network positions (UNP), and systematically investigates the impact mechanisms and spatial heterogeneity of urban network positions on PRCM synergy using a dual fixed-effects model. The findings reveal that (1) urban network positions exert significant inhibitory effects on the overall synergy of PRCM, meaning higher centrality and structural hole advantages hinder synergistic progress. This conclusion remains valid after robustness checks and endogeneity tests using instrumental variables. (2) Heterogeneity analysis shows the inhibitory effects are particularly pronounced in Type I large cities and southern urban agglomerations, attributable to environmental governance path dependence caused by complex industrial structures in metropolises and compounded pressures from export-oriented economies undertaking industrial transfers in southern regions. Northern cities demonstrate stronger environmental resilience due to first-mover advantages in heavy industry transformation. (3) Mechanism testing reveals that cities occupying advantageous network positions tend to reduce environmental regulation stringency and research and development investment levels. Conversely, cities at the network periphery demonstrate late-mover advantages by embedding environmental regulations and building stable technological cooperation partnerships. This study provides a theoretical foundation for optimizing urban network spatial configurations and implementing differentiated environmental governance policies. It emphasizes the necessity of holistically integrating network effects with ecological effects during new-type urbanization, advocating for the establishment of a multi-scale coordinated environmental governance system.
Suggested Citation
Download full text from publisher
Corrections
All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jsusta:v:17:y:2025:i:13:p:5842-:d:1686899. See general information about how to correct material in RePEc.
If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.
We have no bibliographic references for this item. You can help adding them by using this form .
If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.
For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .
Please note that corrections may take a couple of weeks to filter through
the various RePEc services.