IDEAS home Printed from https://ideas.repec.org/a/gam/jsusta/v17y2025i12p5509-d1679361.html
   My bibliography  Save this article

Overcoming Uncertainties Associated with Local Thermal Response Functions in Vertical Ground Heat Exchangers

Author

Listed:
  • Alejandro J. Extremera-Jiménez

    (Department of Mechanical and Mining Engineering, Higher Polytechnic School, University of Jaen, Campus Las Lagunillas s/n, 23071 Jaen, Spain)

  • Pedro J. Casanova-Peláez

    (Department of Electronic Engineering and Automatics, Higher Polytechnic School, University of Jaen, Campus Las Lagunillas s/n, 23071 Jaen, Spain)

  • Charles Yousif

    (Institute for Sustainable Energy, University of Malta, Barrakki Street, 1531 Marsaxlokk, Malta)

  • Fernando Cruz-Peragón

    (Department of Mechanical and Mining Engineering, Higher Polytechnic School, University of Jaen, Campus Las Lagunillas s/n, 23071 Jaen, Spain)

Abstract

The short-term performance of ground heat exchangers (GHEs) is crucial for the optimal design of ground-source heat pumps (GSHPs), enhancing their contribution to sustainable energy solutions. Local short-time thermal response functions, or short-time g-functions (STGFs) derived from thermal response tests (TRTs), are of great interest for predicting the heat exchange due to their fast and simple applicability. The aim of this work is to perform a sensitivity analysis to assess the impact of thermal parameter variability and TRT operating conditions on the accuracy of the average fluid temperature ( T f ) predictions obtained through a local STGF. First, the uncertainties associated with the borehole thermal resistance ( R b ), transmitted from the soil volumetric heat capacity ( C S ) or some models dependent on GHE characteristics, such as the Zeng model, were found to have a low impact in T f resulting in long-term deviations of ±0.2 K. Second, several TRTs were carried out on the same borehole, changing input parameters such as the volumetric flow rate and heat injection rate, in order to obtain their corresponding STGF. Validation results showed that each T f profile consistently aligned well with experimental data when applying intermittent heat rate pulses (being the most unfavorable scenario), implying deviations of ±0.2 K, despite the variabilities in soil conductivity ( λ S ), soil volumetric heat capacity ( C S ), and borehole thermal resistance ( R b ).

Suggested Citation

  • Alejandro J. Extremera-Jiménez & Pedro J. Casanova-Peláez & Charles Yousif & Fernando Cruz-Peragón, 2025. "Overcoming Uncertainties Associated with Local Thermal Response Functions in Vertical Ground Heat Exchangers," Sustainability, MDPI, vol. 17(12), pages 1-17, June.
  • Handle: RePEc:gam:jsusta:v:17:y:2025:i:12:p:5509-:d:1679361
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2071-1050/17/12/5509/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2071-1050/17/12/5509/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Shin, Euntak & Kim, Yoonseong & Kim, Young-Sang & Lee, Sangwon & Choi, Wonjun, 2024. "Dynamic management of ground thermal response uncertainty through temporal analysis of parameter sensitivity," Applied Energy, Elsevier, vol. 376(PB).
    2. Pasquier, Philippe & Marcotte, Denis, 2020. "Robust identification of volumetric heat capacity and analysis of thermal response tests by Bayesian inference with correlated residuals," Applied Energy, Elsevier, vol. 261(C).
    3. Zhang, Xueping & Han, Zongwei & Ji, Qiang & Zhang, Hongzhi & Li, Xiuming, 2021. "Thermal response tests for the identification of soil thermal parameters: A review," Renewable Energy, Elsevier, vol. 173(C), pages 1123-1135.
    4. Yoon, Seok & Lee, Seung-Rae & Go, Gyu-Hyun, 2014. "A numerical and experimental approach to the estimation of borehole thermal resistance in ground heat exchangers," Energy, Elsevier, vol. 71(C), pages 547-555.
    5. Li, Min & Lai, Alvin C.K., 2015. "Review of analytical models for heat transfer by vertical ground heat exchangers (GHEs): A perspective of time and space scales," Applied Energy, Elsevier, vol. 151(C), pages 178-191.
    6. Self, Stuart J. & Reddy, Bale V. & Rosen, Marc A., 2013. "Geothermal heat pump systems: Status review and comparison with other heating options," Applied Energy, Elsevier, vol. 101(C), pages 341-348.
    7. Zarrella, Angelo & Scarpa, Massimiliano & De Carli, Michele, 2011. "Short time step analysis of vertical ground-coupled heat exchangers: The approach of CaRM," Renewable Energy, Elsevier, vol. 36(9), pages 2357-2367.
    8. Cruz-Peragón, F. & Gómez-de la Cruz, F.J. & Palomar-Carnicero, J.M. & López-García, R., 2022. "Optimal design of a hybrid ground source heat pump for an official building with thermal load imbalance and limited space for the ground heat exchanger," Renewable Energy, Elsevier, vol. 195(C), pages 381-394.
    9. Claesson, Johan & Eskilson, Per, 1988. "Conductive heat extraction to a deep borehole: Thermal analyses and dimensioning rules," Energy, Elsevier, vol. 13(6), pages 509-527.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Zhang, Xueping & Han, Zongwei & Ji, Qiang & Zhang, Hongzhi & Li, Xiuming, 2021. "Thermal response tests for the identification of soil thermal parameters: A review," Renewable Energy, Elsevier, vol. 173(C), pages 1123-1135.
    2. Li, Min & Lai, Alvin C.K., 2015. "Review of analytical models for heat transfer by vertical ground heat exchangers (GHEs): A perspective of time and space scales," Applied Energy, Elsevier, vol. 151(C), pages 178-191.
    3. Zhi, Chengqiang & Zhou, Xiang & Hong, Xiaoyu & Wang, Aoxue & Ye, Wei & Zhang, Xu & Chen, Hongxin, 2025. "Field study of the long-term performance and reliability of large-scale ground source heat pump systems applied to a mixed-use complex of buildings," Renewable Energy, Elsevier, vol. 241(C).
    4. Javadi, Hossein & Mousavi Ajarostaghi, Seyed Soheil & Rosen, Marc A. & Pourfallah, Mohsen, 2019. "Performance of ground heat exchangers: A comprehensive review of recent advances," Energy, Elsevier, vol. 178(C), pages 207-233.
    5. Zhang, Changxing & Xu, Chong & Yu, Xiaoxi & Lu, Jiahui & Liu, Yufeng & Sun, Shicai, 2024. "A multi-parameter estimation of layered rock-soil thermal properties of borehole heat exchanger in a stratified subsurface," Renewable Energy, Elsevier, vol. 232(C).
    6. Cui, Yuanlong & Zhu, Jie & Twaha, Ssennoga & Riffat, Saffa, 2018. "A comprehensive review on 2D and 3D models of vertical ground heat exchangers," Renewable and Sustainable Energy Reviews, Elsevier, vol. 94(C), pages 84-114.
    7. Nian, Yong-Le & Cheng, Wen-Long, 2018. "Insights into geothermal utilization of abandoned oil and gas wells," Renewable and Sustainable Energy Reviews, Elsevier, vol. 87(C), pages 44-60.
    8. Rivera, Jaime A. & Blum, Philipp & Bayer, Peter, 2016. "A finite line source model with Cauchy-type top boundary conditions for simulating near surface effects on borehole heat exchangers," Energy, Elsevier, vol. 98(C), pages 50-63.
    9. Zhang, Linfeng & Zhang, Quan & Huang, Gongsheng, 2016. "A transient quasi-3D entire time scale line source model for the fluid and ground temperature prediction of vertical ground heat exchangers (GHEs)," Applied Energy, Elsevier, vol. 170(C), pages 65-75.
    10. Pan, Aiqiang & McCartney, John S. & Lu, Lin & You, Tian, 2020. "A novel analytical multilayer cylindrical heat source model for vertical ground heat exchangers installed in layered ground," Energy, Elsevier, vol. 200(C).
    11. Davide Menegazzo & Giulia Lombardo & Sergio Bobbo & Michele De Carli & Laura Fedele, 2022. "State of the Art, Perspective and Obstacles of Ground-Source Heat Pump Technology in the European Building Sector: A Review," Energies, MDPI, vol. 15(7), pages 1-25, April.
    12. Alshehri, Faisal & Beck, Stephen & Ingham, Derek & Ma, Lin & Pourkashanian, Mohammed, 2021. "Sensitivity analysis of a vertical geothermal heat pump system in a hot dry climate," Renewable Energy, Elsevier, vol. 178(C), pages 785-801.
    13. Carotenuto, Alberto & Ciccolella, Michela & Massarotti, Nicola & Mauro, Alessandro, 2016. "Models for thermo-fluid dynamic phenomena in low enthalpy geothermal energy systems: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 60(C), pages 330-355.
    14. Zhang, Xueping & Han, Zongwei & Meng, Xinwei & Li, Gui & Ji, Qiang & Li, Xiuming & Yang, Lingyan, 2021. "Study on high-precision identification method of ground thermal properties based on neural network model," Renewable Energy, Elsevier, vol. 163(C), pages 1838-1848.
    15. Zhang, Xueping & Han, Zongwei & Li, Xiuming, 2024. "Accurate identification of soil thermal parameters and groundwater flow from thermal response tests," Renewable Energy, Elsevier, vol. 236(C).
    16. Serageldin, Ahmed A. & Nagano, Katsunori, 2024. "A novel oscillatory thermal response test method for efficient characterization of ground thermal properties: Methodology and data analysis," Renewable Energy, Elsevier, vol. 230(C).
    17. Ma, Z.D. & Jia, G.S. & Cui, X. & Xia, Z.H. & Zhang, Y.P. & Jin, L.W., 2020. "Analysis on variations of ground temperature field and thermal radius caused by ground heat exchanger crossing an aquifer layer," Applied Energy, Elsevier, vol. 276(C).
    18. Ikeda, Shintaro & Choi, Wonjun & Ooka, Ryozo, 2017. "Optimization method for multiple heat source operation including ground source heat pump considering dynamic variation in ground temperature," Applied Energy, Elsevier, vol. 193(C), pages 466-478.
    19. Sihan Zhou & Lijie Zhu & Runan Wan & Tao Zhang & Yongzheng Zhang & Yi Zhan & Fang Wang & Linfeng Zhang & Tian You, 2023. "An Overview of Sandbox Experiment on Ground Heat Exchangers," Sustainability, MDPI, vol. 15(14), pages 1-39, July.
    20. Ahmadfard, Mohammadamin & Baniasadi, Ehsan, 2025. "Borehole thermal energy storage systems: A comprehensive review using bibliometric and qualitative tools," Applied Energy, Elsevier, vol. 387(C).

    More about this item

    Keywords

    ;
    ;
    ;
    ;
    ;
    ;

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jsusta:v:17:y:2025:i:12:p:5509-:d:1679361. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.