IDEAS home Printed from https://ideas.repec.org/a/gam/jsusta/v17y2025i12p5505-d1679282.html
   My bibliography  Save this article

Techno-Economic Analysis of an All-Electric Energy Station in Eastern China

Author

Listed:
  • Yihan Sun

    (Department of Environmental Design, Shenyang University of Technology, Shenyang 110178, China)

  • Duo Zhang

    (School of Engineering, University of Surrey, Guildford GU2 7XH, UK)

Abstract

This study conducts a techno-economic evaluation of an all-electric energy station in China. It assesses the system’s feasibility and sustainability. The all-electric energy station integrates multiple components: chillers, air-source heat pumps, electric boilers, water thermal storage, and gas boilers. These components work together to deliver comprehensive cooling and heating services. The research compares this system with an integrated electricity-gas system. It analyzes performance across three key areas: economic benefits, environmental impact, and energy utilization efficiency. The results show significant advantages for the all-electric energy station. Economic analysis reveals that the net present value ( NPV ) of the all-electric energy station is positive, the internal rate of return (IRR) is high, and the payback period is significantly shorter compared to traditional systems. Sensitivity analysis highlights that the discount rate and initial investment are the most influential factors affecting NPV , while cooling prices present substantial revenue optimization potential. The all-electric configuration exhibits greater sensitivity to parameter variations, underscoring the importance of strategic risk management. Additionally, the all-electric energy station excels in environmental protection. Carbon emissions are reduced by 11.5% compared to conventional systems. As renewable energy increases in the grid, indirect carbon emissions will decrease further. The all-electric energy station demonstrates strong economic feasibility. It plays a crucial role in achieving carbon neutrality and promoting green energy development. This study provides valuable insights for future regional integrated energy systems.

Suggested Citation

  • Yihan Sun & Duo Zhang, 2025. "Techno-Economic Analysis of an All-Electric Energy Station in Eastern China," Sustainability, MDPI, vol. 17(12), pages 1-19, June.
  • Handle: RePEc:gam:jsusta:v:17:y:2025:i:12:p:5505-:d:1679282
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2071-1050/17/12/5505/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2071-1050/17/12/5505/
    Download Restriction: no
    ---><---

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jsusta:v:17:y:2025:i:12:p:5505-:d:1679282. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.