IDEAS home Printed from https://ideas.repec.org/a/gam/jsusta/v17y2025i12p5279-d1674049.html
   My bibliography  Save this article

A New Agent-Based Model to Simulate Demand-Responsive Transit in Small-Sized Cities

Author

Listed:
  • Giovanni Calabrò

    (Department of Electrical Electronic and Computer Engineering, University of Catania, 95123 Catania, Italy)

Abstract

Innovative demand-responsive transport services are spreading in most urban areas, allowing dynamic matching between demand and supply and enabling travellers to request shared rides in real-time via mobile applications. They are used both as an alternative to public transport and as an access/egress leg to mass transit stations, i.e., acting as a feeder service. In low-demand areas and small-sized cities, it is often difficult to provide effective and cost-efficient public transport, thus resulting in an extensive use of private vehicles. Using an agent-based modelling approach, this study compares the performance of fixed-route transit (FRT) and demand-responsive transit (DRT), where optional stops can be activated on demand. The aim is to identify the conditions allowing DRT to become more advantageous than FRT in small-sized cities, both for travellers and the transport operator. A real-time matching algorithm identifies optimal trip chains (i.e., public transport lines; pick-up, drop-off and transfer stops; and time windows) for travel requests, dynamically updating vehicles’ routes and schedules. The model is applied to the city of Caltanissetta, Italy, where a transit service with six FRT urban lines is currently operating. Travel patterns were reconstructed from thousands of travel requests collected by a Mobility-as-a-Service platform within one-year. The main findings demonstrate the benefits of DRT in providing a higher quality of service, reducing riding times for passengers, and enhancing service efficiency without burdening operating costs. The DRT reduced the vehicle-kilometres travelled by up to 5% compared to FRT while decreasing passenger ride times by approximately 10%. An economic analysis showed reductions in operator unit costs of up to 3.4% for low-demand rates, confirming the advantages of flexible operations in small-sized cities.

Suggested Citation

  • Giovanni Calabrò, 2025. "A New Agent-Based Model to Simulate Demand-Responsive Transit in Small-Sized Cities," Sustainability, MDPI, vol. 17(12), pages 1-20, June.
  • Handle: RePEc:gam:jsusta:v:17:y:2025:i:12:p:5279-:d:1674049
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2071-1050/17/12/5279/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2071-1050/17/12/5279/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Xin Li & Ming Wei & Jia Hu & Yun Yuan & Huifu Jiang, 2018. "An Agent-Based Model for Dispatching Real-Time Demand-Responsive Feeder Bus," Mathematical Problems in Engineering, Hindawi, vol. 2018, pages 1-11, March.
    2. Cavallaro, Federico & Nocera, Silvio, 2023. "Flexible-route integrated passenger–freight transport in rural areas," Transportation Research Part A: Policy and Practice, Elsevier, vol. 169(C).
    3. Lu, Chengqi & Maciejewski, Michal & Wu, Hao & Nagel, Kai, 2023. "Demand-responsive transport for students in rural areas: A case study in Vulkaneifel, Germany," Transportation Research Part A: Policy and Practice, Elsevier, vol. 178(C).
    4. Sandra Melo & Rui Gomes & Reza Abbasi & Amílcar Arantes, 2024. "Demand-Responsive Transport for Urban Mobility: Integrating Mobile Data Analytics to Enhance Public Transportation Systems," Sustainability, MDPI, vol. 16(11), pages 1-18, May.
    5. Garcia-Martinez, Andres & Cascajo, Rocio & Jara-Diaz, Sergio R. & Chowdhury, Subeh & Monzon, Andres, 2018. "Transfer penalties in multimodal public transport networks," Transportation Research Part A: Policy and Practice, Elsevier, vol. 114(PA), pages 52-66.
    6. Currie, Graham & Fournier, Nicholas, 2020. "Why most DRT/Micro-Transits fail – What the survivors tell us about progress," Research in Transportation Economics, Elsevier, vol. 83(C).
    7. Nadia Giuffrida & Michela Le Pira & Giuseppe Inturri & Matteo Ignaccolo & Giovanni Calabrò & Blochin Cuius & Riccardo D’Angelo & Alessandro Pluchino, 2020. "On-Demand Flexible Transit in Fast-Growing Cities: The Case of Dubai," Sustainability, MDPI, vol. 12(11), pages 1-15, May.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. He, Dongdong & Guan, Wei, 2023. "Promoting service quality with incentive contracts in rural bus integrated passenger-freight service," Transportation Research Part A: Policy and Practice, Elsevier, vol. 175(C).
    2. Ringsberg, Henrik, 2023. "Sustainable FLM transport based on IPF transport by ferry in coastal rural areas: A case from Sweden," Transportation Research Part A: Policy and Practice, Elsevier, vol. 178(C).
    3. Yue Liu & Jun Chen & Weiguang Wu & Jiao Ye, 2019. "Typical Combined Travel Mode Choice Utility Model in Multimodal Transportation Network," Sustainability, MDPI, vol. 11(2), pages 1-15, January.
    4. Zahari, Teuku Naraski & McLellan, Benjamin Craig, 2024. "Sustainability of Indonesia's transportation sector energy and resources demand under the low carbon transition strategies," Energy, Elsevier, vol. 311(C).
    5. Chen, Enhui & Stathopoulos, Amanda & Nie, Yu (Marco), 2022. "Transfer station choice in a multimodal transit system: An empirical study," Transportation Research Part A: Policy and Practice, Elsevier, vol. 165(C), pages 337-355.
    6. Romero, Fernando & Gomez, Juan & Paez, Antonio & Vassallo, José Manuel, 2020. "Toll roads vs. Public transportation: A study on the acceptance of congestion-calming measures in Madrid," Transportation Research Part A: Policy and Practice, Elsevier, vol. 142(C), pages 319-342.
    7. Marek Bauer & Piotr Kisielewski, 2021. "The Influence of the Duration of Journey Stages on Transport Mode Choice: A Case Study in the City of Tarnow," Sustainability, MDPI, vol. 13(11), pages 1-15, May.
    8. Martin Zajac & Jiří Horák & Joaquín Osorio-Arjona & Pavel Kukuliač & James Haworth, 2022. "Public Transport Tweets in London, Madrid and Prague in the COVID-19 Period—Temporal and Spatial Differences in Activity Topics," Sustainability, MDPI, vol. 14(24), pages 1-25, December.
    9. Carlos Romero & Clara Zamorano & Emilio Ortega & Belén Martín, 2021. "Access to Secondary HSR Stations in the Urban Periphery: A Generalised Cost-Based Assessment," Sustainability, MDPI, vol. 13(21), pages 1-19, November.
    10. Ji, Yuxiong & Zhou, Minhang & Zheng, Yujing & Shen, Yu & Du, Yuchuan, 2024. "Urban passenger-and-package sharing transportation by e-hailing taxis: A simulation-based pricing analysis in shanghai," Transport Policy, Elsevier, vol. 156(C), pages 138-151.
    11. He, Ping & Jin, Jian Gang & Trépanier, Martin & Schulte, Frederik, 2024. "A math-heuristic and exact algorithm for first-mile ridesharing problem with passenger service quality preferences," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 192(C).
    12. Ghimire, Subid & Bardaka, Eleni & Monast, Kai & Wang, Juan & Wright, Waugh, 2024. "Policy, management, and operation practices in U.S. microtransit systems," Transport Policy, Elsevier, vol. 145(C), pages 259-278.
    13. Kriswardhana, Willy & Esztergár-Kiss, Domokos, 2025. "The role of intermodality and environmental consciousness in the preferences for MaaS bundles: A hybrid choice modeling approach," Transportation Research Part A: Policy and Practice, Elsevier, vol. 191(C).
    14. Berrada, Jaâfar & Poulhès, Alexis, 2021. "Economic and socioeconomic assessment of replacing conventional public transit with demand responsive transit services in low-to-medium density areas," Transportation Research Part A: Policy and Practice, Elsevier, vol. 150(C), pages 317-334.
    15. Masone, Adriano & Marzano, Vittorio & Simonelli, Fulvio & Sterle, Claudio, 2024. "Exact and heuristic approaches for the Modal Shift Incentive Problem," Socio-Economic Planning Sciences, Elsevier, vol. 93(C).
    16. Krister Ian Daniel Roquel & Raymund Paolo Abad & Alexis Fillone, 2021. "Proximity Indexing of Public Transport Terminals in Metro Manila," Sustainability, MDPI, vol. 13(8), pages 1-16, April.
    17. Jara-Díaz, Sergio R. & Rosales-Salas, Jorge, 2020. "Time use: The role of sleep," Transportation Research Part A: Policy and Practice, Elsevier, vol. 136(C), pages 1-20.
    18. Wu, Weitiao & Zhu, Yanchen & Liu, Ronghui, 2024. "Dynamic scheduling of flexible bus services with hybrid requests and fairness: Heuristics-guided multi-agent reinforcement learning with imitation learning," Transportation Research Part B: Methodological, Elsevier, vol. 190(C).
    19. Fu, Zhexi & Chow, Joseph Y.J., 2022. "The pickup and delivery problem with synchronized en-route transfers for microtransit planning," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 157(C).
    20. Yap, Menno & Cats, Oded, 2021. "Taking the path less travelled: Valuation of denied boarding in crowded public transport systems," Transportation Research Part A: Policy and Practice, Elsevier, vol. 147(C), pages 1-13.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jsusta:v:17:y:2025:i:12:p:5279-:d:1674049. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.