IDEAS home Printed from https://ideas.repec.org/a/gam/jsusta/v17y2025i12p5279-d1674049.html
   My bibliography  Save this article

A New Agent-Based Model to Simulate Demand-Responsive Transit in Small-Sized Cities

Author

Listed:
  • Giovanni Calabrò

    (Department of Electrical Electronic and Computer Engineering, University of Catania, 95123 Catania, Italy)

Abstract

Innovative demand-responsive transport services are spreading in most urban areas, allowing dynamic matching between demand and supply and enabling travellers to request shared rides in real-time via mobile applications. They are used both as an alternative to public transport and as an access/egress leg to mass transit stations, i.e., acting as a feeder service. In low-demand areas and small-sized cities, it is often difficult to provide effective and cost-efficient public transport, thus resulting in an extensive use of private vehicles. Using an agent-based modelling approach, this study compares the performance of fixed-route transit (FRT) and demand-responsive transit (DRT), where optional stops can be activated on demand. The aim is to identify the conditions allowing DRT to become more advantageous than FRT in small-sized cities, both for travellers and the transport operator. A real-time matching algorithm identifies optimal trip chains (i.e., public transport lines; pick-up, drop-off and transfer stops; and time windows) for travel requests, dynamically updating vehicles’ routes and schedules. The model is applied to the city of Caltanissetta, Italy, where a transit service with six FRT urban lines is currently operating. Travel patterns were reconstructed from thousands of travel requests collected by a Mobility-as-a-Service platform within one-year. The main findings demonstrate the benefits of DRT in providing a higher quality of service, reducing riding times for passengers, and enhancing service efficiency without burdening operating costs. The DRT reduced the vehicle-kilometres travelled by up to 5% compared to FRT while decreasing passenger ride times by approximately 10%. An economic analysis showed reductions in operator unit costs of up to 3.4% for low-demand rates, confirming the advantages of flexible operations in small-sized cities.

Suggested Citation

  • Giovanni Calabrò, 2025. "A New Agent-Based Model to Simulate Demand-Responsive Transit in Small-Sized Cities," Sustainability, MDPI, vol. 17(12), pages 1-20, June.
  • Handle: RePEc:gam:jsusta:v:17:y:2025:i:12:p:5279-:d:1674049
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2071-1050/17/12/5279/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2071-1050/17/12/5279/
    Download Restriction: no
    ---><---

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jsusta:v:17:y:2025:i:12:p:5279-:d:1674049. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.