IDEAS home Printed from https://ideas.repec.org/a/gam/jsusta/v17y2025i11p5093-d1670115.html
   My bibliography  Save this article

Examining Glacier Changes Since 1990 and Predicting Future Changes in the Turpan–Hami Area, Eastern Tianshan Mountains (China), Until the End of the 21st Century

Author

Listed:
  • Yuqian Chen

    (School of Geography and Remote Sensing Science, Xinjiang University, Urumqi 830046, China
    Key Laboratory of Oasis Ecology, Ministry of Education, Xinjiang University, Urumqi 830046, China
    Key Laboratory of Smart City and Environment Modelling of Higher Education Institute, Xinjiang University, Urumqi 830046, China)

  • Baozhong He

    (School of Geography and Remote Sensing Science, Xinjiang University, Urumqi 830046, China
    Key Laboratory of Oasis Ecology, Ministry of Education, Xinjiang University, Urumqi 830046, China
    Key Laboratory of Smart City and Environment Modelling of Higher Education Institute, Xinjiang University, Urumqi 830046, China)

  • Xing Jiang

    (School of Geography and Remote Sensing Science, Xinjiang University, Urumqi 830046, China
    Key Laboratory of Oasis Ecology, Ministry of Education, Xinjiang University, Urumqi 830046, China
    Key Laboratory of Smart City and Environment Modelling of Higher Education Institute, Xinjiang University, Urumqi 830046, China)

  • Gulinigaer Yisilayili

    (School of Geography and Remote Sensing Science, Xinjiang University, Urumqi 830046, China
    Key Laboratory of Oasis Ecology, Ministry of Education, Xinjiang University, Urumqi 830046, China
    Key Laboratory of Smart City and Environment Modelling of Higher Education Institute, Xinjiang University, Urumqi 830046, China)

  • Zhihao Zhang

    (School of Geography and Remote Sensing Science, Xinjiang University, Urumqi 830046, China
    Key Laboratory of Oasis Ecology, Ministry of Education, Xinjiang University, Urumqi 830046, China
    Key Laboratory of Smart City and Environment Modelling of Higher Education Institute, Xinjiang University, Urumqi 830046, China)

Abstract

Glaciers, often regarded as “frozen reservoirs”, play a crucial role in replenishing numerous rivers in arid regions, contributing to ecological balance and managing river flow. Recently, the rapid shrinkage of the glaciers in the East Tianshan Mountains has affected the water quantity in the Karez system. However, studies on glacier changes in this region are limited, and recent data are scarce. This study utilizes annual Landsat composite images from 1990 to 2022 obtained via the Google Earth Engine (GEE). It utilizes a ratio threshold approach in conjunction with visual analysis to gather the glacier dataset specific to the Turpan–Hami region. The Open Global Glacier Model (OGGM) is used to model the flowlines and mass balance of around 300 glaciers. The study analyzes the glacier change trends, distribution characteristics, and responses to climate factors in the Turpan–Hami region over the past 30 years. Additionally, future glacier changes through the end of the century are projected using CMIP6 climate data. The findings indicate that the following: (1) From 1990 to 2022, glaciers in the research area underwent considerable retreat. The total glacier area decreased from 204.04 ± 0.887 km 2 to 133.52 ± 0.742 km 2 , a reduction of 70.52 km 2 , representing a retreat rate of 34.56%. The number of glaciers also decreased from 304 in 1990 to 236 in 2022. The glacier length decreased by an average of 7.54 m·a −1 , with the average mass balance at −0.34 m w.e.·a −1 , indicating a long-term loss of glacier mass. (2) Future projections to 2100 indicate that under three climate scenarios, the area covered by glaciers could diminish by 89%, or 99%, or even vanish entirely. In the SSP585 scenario, glaciers are projected to nearly disappear by 2057. (3) Rising temperatures and solar radiation are the primary factors driving glacier retreat in the Turpan–Hami area. Especially under high emission scenarios, climate warming will accelerate the glacier retreat process.

Suggested Citation

  • Yuqian Chen & Baozhong He & Xing Jiang & Gulinigaer Yisilayili & Zhihao Zhang, 2025. "Examining Glacier Changes Since 1990 and Predicting Future Changes in the Turpan–Hami Area, Eastern Tianshan Mountains (China), Until the End of the 21st Century," Sustainability, MDPI, vol. 17(11), pages 1-35, June.
  • Handle: RePEc:gam:jsusta:v:17:y:2025:i:11:p:5093-:d:1670115
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2071-1050/17/11/5093/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2071-1050/17/11/5093/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Romain Hugonnet & Robert McNabb & Etienne Berthier & Brian Menounos & Christopher Nuth & Luc Girod & Daniel Farinotti & Matthias Huss & Ines Dussaillant & Fanny Brun & Andreas Kääb, 2021. "Accelerated global glacier mass loss in the early twenty-first century," Nature, Nature, vol. 592(7856), pages 726-731, April.
    2. K. M. Grant & E. J. Rohling & M. Bar-Matthews & A. Ayalon & M. Medina-Elizalde & C. Bronk Ramsey & C. Satow & A. P. Roberts, 2012. "Rapid coupling between ice volume and polar temperature over the past 150,000 years," Nature, Nature, vol. 491(7426), pages 744-747, November.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Yusuke Yokoyama & Kurt Lambeck & Patrick Deckker & Tezer M. Esat & Jody M. Webster & Masao Nakada, 2022. "Towards solving the missing ice problem and the importance of rigorous model data comparisons," Nature Communications, Nature, vol. 13(1), pages 1-4, December.
    2. Wang, Zongxia & Liu, Suxia, 2025. "Double disaggregation of the decline of terrestrial water storage for a highly cultivated dryland partially covered by glaciers," Agricultural Water Management, Elsevier, vol. 307(C).
    3. Berthold, Anne & Cologna, Viktoria & Siegrist, Michael, 2022. "The influence of scarcity perception on people's pro-environmental behavior and their readiness to accept new sustainable technologies," Ecological Economics, Elsevier, vol. 196(C).
    4. Caroline Taylor & Tom R. Robinson & Stuart Dunning & J. Rachel Carr & Matthew Westoby, 2023. "Glacial lake outburst floods threaten millions globally," Nature Communications, Nature, vol. 14(1), pages 1-10, December.
    5. Ø. Foss & J. Maton & G. Moholdt & L. S. Schmidt & D. A. Sutherland & I. Fer & F. Nilsen & J. Kohler & A. Sundfjord, 2024. "Ocean warming drives immediate mass loss from calving glaciers in the high Arctic," Nature Communications, Nature, vol. 15(1), pages 1-9, December.
    6. Roger C. Creel & Jacqueline Austermann & Robert E. Kopp & Nicole S. Khan & Torsten Albrecht & Jonathan Kingslake, 2024. "Global mean sea level likely higher than present during the holocene," Nature Communications, Nature, vol. 15(1), pages 1-14, December.
    7. Yijia Liang & Kan Zhao & Yongjin Wang & Shitao Chen & Tyler E. Huth & Bin Zhao & Quan Wang & Zhenqiu Zhang & Qingfeng Shao & Hai Cheng & R. Lawrence Edwards, 2025. "Asian summer monsoon variability across Termination II and implications for ice age terminations," Nature Communications, Nature, vol. 16(1), pages 1-9, December.
    8. Renlu Qiao & Shuo Gao & Xiaochang Liu & Li Xia & Guobin Zhang & Xi Meng & Zhiyu Liu & Mo Wang & Shiqi Zhou & Zhiqiang Wu, 2024. "Understanding the global subnational migration patterns driven by hydrological intrusion exposure," Nature Communications, Nature, vol. 15(1), pages 1-12, December.
    9. Heather M. Stoll & Isabel Cacho & Edward Gasson & Jakub Sliwinski & Oliver Kost & Ana Moreno & Miguel Iglesias & Judit Torner & Carlos Perez-Mejias & Negar Haghipour & Hai Cheng & R. Lawrence Edwards, 2022. "Rapid northern hemisphere ice sheet melting during the penultimate deglaciation," Nature Communications, Nature, vol. 13(1), pages 1-16, December.
    10. Konstantin A. Maslov & Claudio Persello & Thomas Schellenberger & Alfred Stein, 2025. "Globally scalable glacier mapping by deep learning matches expert delineation accuracy," Nature Communications, Nature, vol. 16(1), pages 1-14, December.
    11. Kirat, Yassine & Prodromou, Tina & Suardi, Sandy, 2024. "Unveiling the Nexus: Climate change, green innovation, and the pendulum of energy consumption and carbon emissions," Energy Economics, Elsevier, vol. 138(C).
    12. Yanjun Che & Shijin Wang & Yanqiang Wei & Tao Pu & Xinggang Ma, 2022. "Rapid changes to glaciers increased the outburst flood risk in Guangxieco Proglacial Lake in the Kangri Karpo Mountains, Southeast Qinghai-Tibetan Plateau," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 110(3), pages 2163-2184, February.
    13. Tong Cui & Yukun Li & Long Yang & Yi Nan & Kunbiao Li & Mahmut Tudaji & Hongchang Hu & Di Long & Muhammad Shahid & Ammara Mubeen & Zhihua He & Bin Yong & Hui Lu & Chao Li & Guangheng Ni & Chunhong Hu , 2023. "Non-monotonic changes in Asian Water Towers’ streamflow at increasing warming levels," Nature Communications, Nature, vol. 14(1), pages 1-9, December.
    14. J. Haacker & B. Wouters & X. Fettweis & I. A. Glissenaar & J. E. Box, 2024. "Atmospheric-river-induced foehn events drain glaciers on Novaya Zemlya," Nature Communications, Nature, vol. 15(1), pages 1-10, December.
    15. Bethan Davies & Robert McNabb & Jacob Bendle & Jonathan Carrivick & Jeremy Ely & Tom Holt & Bradley Markle & Christopher McNeil & Lindsey Nicholson & Mauri Pelto, 2024. "Accelerating glacier volume loss on Juneau Icefield driven by hypsometry and melt-accelerating feedbacks," Nature Communications, Nature, vol. 15(1), pages 1-19, December.
    16. William Kochtitzky & Luke Copland & Wesley Wychen & Romain Hugonnet & Regine Hock & Julian A. Dowdeswell & Toby Benham & Tazio Strozzi & Andrey Glazovsky & Ivan Lavrentiev & David R. Rounce & Romain M, 2022. "The unquantified mass loss of Northern Hemisphere marine-terminating glaciers from 2000–2020," Nature Communications, Nature, vol. 13(1), pages 1-10, December.
    17. B. Rick & D. McGrath & S. W. McCoy & W. H. Armstrong, 2023. "Unchanged frequency and decreasing magnitude of outbursts from ice-dammed lakes in Alaska," Nature Communications, Nature, vol. 14(1), pages 1-10, December.
    18. Gang Wang & Anlan Feng & Lei Xu & Qiang Zhang & Wenlong Song & Vijay P. Singh & Wenhuan Wu & Kaiwen Zhang & Shuai Sun, 2025. "Increasing Selin Co Lake Area in the Tibet Plateau with Its Moisture Cycle," Sustainability, MDPI, vol. 17(5), pages 1-19, February.
    19. Jing Wei & Laurent Fontaine & Nicolas Valiente & Peter Dörsch & Dag O. Hessen & Alexander Eiler, 2023. "Trajectories of freshwater microbial genomics and greenhouse gas saturation upon glacial retreat," Nature Communications, Nature, vol. 14(1), pages 1-12, December.
    20. Bashar Bashir & Abdullah Alsalman, 2024. "Morphometric and Soil Erosion Characterization Based on Geospatial Analysis and Drainage Basin Prioritization of the Rabigh Area Along the Eastern Red Sea Coastal Plain, Saudi Arabia," Sustainability, MDPI, vol. 16(20), pages 1-26, October.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jsusta:v:17:y:2025:i:11:p:5093-:d:1670115. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.