IDEAS home Printed from https://ideas.repec.org/a/nat/natcom/v16y2025i1d10.1038_s41467-024-54956-x.html
   My bibliography  Save this article

Globally scalable glacier mapping by deep learning matches expert delineation accuracy

Author

Listed:
  • Konstantin A. Maslov

    (University of Twente)

  • Claudio Persello

    (University of Twente)

  • Thomas Schellenberger

    (University of Oslo)

  • Alfred Stein

    (University of Twente)

Abstract

Accurate global glacier mapping is critical for understanding climate change impacts. Despite its importance, automated glacier mapping at a global scale remains largely unexplored. Here we address this gap and propose Glacier-VisionTransformer-U-Net (GlaViTU), a convolutional-transformer deep learning model, and five strategies for multitemporal global-scale glacier mapping using open satellite imagery. Assessing the spatial, temporal and cross-sensor generalisation shows that our best strategy achieves intersection over union >0.85 on previously unobserved images in most cases, which drops to >0.75 for debris-rich areas such as High-Mountain Asia and increases to >0.90 for regions dominated by clean ice. A comparative validation against human expert uncertainties in terms of area and distance deviations underscores GlaViTU performance, approaching or matching expert-level delineation. Adding synthetic aperture radar data, namely, backscatter and interferometric coherence, increases the accuracy in all regions where available. The calibrated confidence for glacier extents is reported making the predictions more reliable and interpretable. We also release a benchmark dataset that covers 9% of glaciers worldwide. Our results support efforts towards automated multitemporal and global glacier mapping.

Suggested Citation

  • Konstantin A. Maslov & Claudio Persello & Thomas Schellenberger & Alfred Stein, 2025. "Globally scalable glacier mapping by deep learning matches expert delineation accuracy," Nature Communications, Nature, vol. 16(1), pages 1-14, December.
  • Handle: RePEc:nat:natcom:v:16:y:2025:i:1:d:10.1038_s41467-024-54956-x
    DOI: 10.1038/s41467-024-54956-x
    as

    Download full text from publisher

    File URL: https://www.nature.com/articles/s41467-024-54956-x
    File Function: Abstract
    Download Restriction: no

    File URL: https://libkey.io/10.1038/s41467-024-54956-x?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Georg Veh & Natalie Lützow & Jenny Tamm & Lisa V. Luna & Romain Hugonnet & Kristin Vogel & Marten Geertsema & John J. Clague & Oliver Korup, 2023. "Less extreme and earlier outbursts of ice-dammed lakes since 1900," Nature, Nature, vol. 614(7949), pages 701-707, February.
    2. Javaid Laghari, 2013. "Climate change: Melting glaciers bring energy uncertainty," Nature, Nature, vol. 502(7473), pages 617-618, October.
    3. Matthias Huss & Regine Hock, 2018. "Global-scale hydrological response to future glacier mass loss," Nature Climate Change, Nature, vol. 8(2), pages 135-140, February.
    4. Romain Hugonnet & Robert McNabb & Etienne Berthier & Brian Menounos & Christopher Nuth & Luc Girod & Daniel Farinotti & Matthias Huss & Ines Dussaillant & Fanny Brun & Andreas Kääb, 2021. "Accelerated global glacier mass loss in the early twenty-first century," Nature, Nature, vol. 592(7856), pages 726-731, April.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Michel Wortmann & Doris Duethmann & Christoph Menz & Tobias Bolch & Shaochun Huang & Jiang Tong & Zbigniew W. Kundzewicz & Valentina Krysanova, 2022. "Projected climate change and its impacts on glaciers and water resources in the headwaters of the Tarim River, NW China/Kyrgyzstan," Climatic Change, Springer, vol. 171(3), pages 1-24, April.
    2. Kara J. Pitman & Jonathan W. Moore & Matthias Huss & Matthew R. Sloat & Diane C. Whited & Tim J. Beechie & Rich Brenner & Eran W. Hood & Alexander M. Milner & George R. Pess & Gordan H. Reeves & Danie, 2021. "Glacier retreat creating new Pacific salmon habitat in western North America," Nature Communications, Nature, vol. 12(1), pages 1-10, December.
    3. Caroline Taylor & Tom R. Robinson & Stuart Dunning & J. Rachel Carr & Matthew Westoby, 2023. "Glacial lake outburst floods threaten millions globally," Nature Communications, Nature, vol. 14(1), pages 1-10, December.
    4. Shijin Wang & Yanqiang Wei, 2019. "Water resource system risk and adaptive management of the Chinese Heihe River Basin in Asian arid areas," Mitigation and Adaptation Strategies for Global Change, Springer, vol. 24(7), pages 1271-1292, October.
    5. Cook, David & Malinauskaite, Laura & Davíðsdóttir, Brynhildur & Ögmundardóttir, Helga, 2021. "Co-production processes underpinning the ecosystem services of glaciers and adaptive management in the era of climate change," Ecosystem Services, Elsevier, vol. 50(C).
    6. Mark D. Risser & William D. Collins & Michael F. Wehner & Travis A. O’Brien & Huanping Huang & Paul A. Ullrich, 2024. "Anthropogenic aerosols mask increases in US rainfall by greenhouse gases," Nature Communications, Nature, vol. 15(1), pages 1-15, December.
    7. Yanjun Che & Shijin Wang & Yanqiang Wei & Tao Pu & Xinggang Ma, 2022. "Rapid changes to glaciers increased the outburst flood risk in Guangxieco Proglacial Lake in the Kangri Karpo Mountains, Southeast Qinghai-Tibetan Plateau," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 110(3), pages 2163-2184, February.
    8. Tong Cui & Yukun Li & Long Yang & Yi Nan & Kunbiao Li & Mahmut Tudaji & Hongchang Hu & Di Long & Muhammad Shahid & Ammara Mubeen & Zhihua He & Bin Yong & Hui Lu & Chao Li & Guangheng Ni & Chunhong Hu , 2023. "Non-monotonic changes in Asian Water Towers’ streamflow at increasing warming levels," Nature Communications, Nature, vol. 14(1), pages 1-9, December.
    9. Abhishek Banerjee & Shichang Kang & Wanqin Guo & Michael E. Meadows & Weicai Wang & Dhritiraj Sengupta & Taigang Zhang, 2024. "Glacier retreat and lake outburst floods in the central Himalayan region from 2000 to 2022," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 120(6), pages 5485-5508, April.
    10. Chang Li & Jing Wu & Dehua Li & Yan Jiang & Yijin Wu, 2023. "Study on the Correlation between Life Expectancy and the Ecological Environment around the Cities along the Belt and Road," IJERPH, MDPI, vol. 20(3), pages 1-25, January.
    11. Han, Shumin & Xin, Ping & Li, Huilong & Yang, Yonghui, 2022. "Evolution of agricultural development and land-water-food nexus in Central Asia," Agricultural Water Management, Elsevier, vol. 273(C).
    12. J. Haacker & B. Wouters & X. Fettweis & I. A. Glissenaar & J. E. Box, 2024. "Atmospheric-river-induced foehn events drain glaciers on Novaya Zemlya," Nature Communications, Nature, vol. 15(1), pages 1-10, December.
    13. Alina Motschmann & Christian Huggel & Mark Carey & Holly Moulton & Noah Walker-Crawford & Randy Muñoz, 2020. "Losses and damages connected to glacier retreat in the Cordillera Blanca, Peru," Climatic Change, Springer, vol. 162(2), pages 837-858, September.
    14. Tauheed Ullah Khan & Abdul Mannan & Charlotte E. Hacker & Shahid Ahmad & Muhammad Amir Siddique & Barkat Ullah Khan & Emad Ud Din & Minhao Chen & Chao Zhang & Moazzam Nizami & Xiaofeng Luan, 2021. "Use of GIS and Remote Sensing Data to Understand the Impacts of Land Use/Land Cover Changes (LULCC) on Snow Leopard ( Panthera uncia ) Habitat in Pakistan," Sustainability, MDPI, vol. 13(7), pages 1-19, March.
    15. Jiahui Li & Xinliang Xu, 2023. "Glacier Change and Its Response to Climate Change in Western China," Land, MDPI, vol. 12(3), pages 1-13, March.
    16. Jing Wei & Laurent Fontaine & Nicolas Valiente & Peter Dörsch & Dag O. Hessen & Alexander Eiler, 2023. "Trajectories of freshwater microbial genomics and greenhouse gas saturation upon glacial retreat," Nature Communications, Nature, vol. 14(1), pages 1-12, December.
    17. Bashar Bashir & Abdullah Alsalman, 2024. "Morphometric and Soil Erosion Characterization Based on Geospatial Analysis and Drainage Basin Prioritization of the Rabigh Area Along the Eastern Red Sea Coastal Plain, Saudi Arabia," Sustainability, MDPI, vol. 16(20), pages 1-26, October.
    18. Shannon G. Klein & Cassandra Roch & Carlos M. Duarte, 2024. "Systematic review of the uncertainty of coral reef futures under climate change," Nature Communications, Nature, vol. 15(1), pages 1-17, December.
    19. Daniel Ehrbar & Lukas Schmocker & Michael Doering & Marco Cortesi & Gérald Bourban & Robert M. Boes & David F. Vetsch, 2018. "Continuous Seasonal and Large-Scale Periglacial Reservoir Sedimentation," Sustainability, MDPI, vol. 10(9), pages 1-16, September.
    20. Jinglin Zhang & Wei Zhang & Shiwei Liu & Weiming Kong & Wei Zhang, 2022. "Cryosphere Services to Advance the National SDG Priorities in Himalaya-Karakoram Region," Sustainability, MDPI, vol. 14(5), pages 1-16, February.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:nat:natcom:v:16:y:2025:i:1:d:10.1038_s41467-024-54956-x. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.nature.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.