IDEAS home Printed from https://ideas.repec.org/a/wly/perpro/v36y2025i1p93-109.html
   My bibliography  Save this article

Recent Advances (2018–2023) and Research Opportunities in the Study of Groundwater in Cold Regions

Author

Listed:
  • Jean‐Michel Lemieux
  • Andrew Frampton
  • Philippe Fortier

Abstract

Increasing greenhouse gas levels drive extensive changes in Arctic and cold‐dominated environments, leading to a warmer, more humid, and variable climate. Associated permafrost thaw creates new groundwater flow paths in cold regions that are causing unprecedented environmental changes. This review of recent advances in groundwater research in cold environments has revealed that a new paradigm is emerging where groundwater is at the center of these changes. Groundwater flow and associated heat and solute transport are now used as a basis to understand hydrological changes, permafrost dynamics, water quality, integrity of infrastructure along with ecological impacts. Although major advances have been achieved in cold regions' cryohydrogeological research, the remaining knowledge gaps are numerous. For example, groundwater as a drinking water source is poorly documented despite its social importance. Lateral transport processes for carbon and contaminants are still inadequately understood. Numerical models are improving, but the highly complex physical‐ecological changes occurring in the arctic involve coupled thermal, hydrological, hydrogeological, mechanical, and geochemical processes that are difficult to represent and hamper quantitative analysis and limit predictive capacity. Systematic long‐term observatories where measurements involving groundwater are considered central are needed to help resolve these research gaps. Innovative transdisciplinary research will be critical to comprehend and predict these complex transformations.

Suggested Citation

  • Jean‐Michel Lemieux & Andrew Frampton & Philippe Fortier, 2025. "Recent Advances (2018–2023) and Research Opportunities in the Study of Groundwater in Cold Regions," Permafrost and Periglacial Processes, John Wiley & Sons, vol. 36(1), pages 93-109, January.
  • Handle: RePEc:wly:perpro:v:36:y:2025:i:1:p:93-109
    DOI: 10.1002/ppp.2255
    as

    Download full text from publisher

    File URL: https://doi.org/10.1002/ppp.2255
    Download Restriction: no

    File URL: https://libkey.io/10.1002/ppp.2255?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Matthias Huss & Regine Hock, 2018. "Global-scale hydrological response to future glacier mass loss," Nature Climate Change, Nature, vol. 8(2), pages 135-140, February.
    2. Craig T. Connolly & M. Bayani Cardenas & Greta A. Burkart & Robert G. M. Spencer & James W. McClelland, 2020. "Groundwater as a major source of dissolved organic matter to Arctic coastal waters," Nature Communications, Nature, vol. 11(1), pages 1-8, December.
    3. Carolina Olid & Valentí Rodellas & Gerard Rocher-Ros & Jordi Garcia-Orellana & Marc Diego-Feliu & Aaron Alorda-Kleinglass & David Bastviken & Jan Karlsson, 2022. "Groundwater discharge as a driver of methane emissions from Arctic lakes," Nature Communications, Nature, vol. 13(1), pages 1-9, December.
    4. Alessandro Ielpi & Mathieu G. A. Lapôtre & Alvise Finotello & Pascale Roy-Léveillée, 2023. "Large sinuous rivers are slowing down in a warming Arctic," Nature Climate Change, Nature, vol. 13(4), pages 375-381, April.
    5. Milad Fakhari & Jasmin Raymond & Richard Martel & Stephen J. Dugdale & Normand Bergeron, 2022. "Identification of Thermal Refuges and Water Temperature Patterns in Salmonid-Bearing Subarctic Rivers of Northern Quebec," Geographies, MDPI, vol. 2(3), pages 1-21, September.
    6. Carolyn M. Gibson & Laura E. Chasmer & Dan K. Thompson & William L. Quinton & Mike D. Flannigan & David Olefeldt, 2018. "Wildfire as a major driver of recent permafrost thaw in boreal peatlands," Nature Communications, Nature, vol. 9(1), pages 1-9, December.
    7. Rúna Í. Magnússon & Alexandra Hamm & Sergey V. Karsanaev & Juul Limpens & David Kleijn & Andrew Frampton & Trofim C. Maximov & Monique M. P. D. Heijmans, 2022. "Extremely wet summer events enhance permafrost thaw for multiple years in Siberian tundra," Nature Communications, Nature, vol. 13(1), pages 1-10, December.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Zhang, Hongyu & Deji, Wangzhen & Farinotti, Daniel & Zhang, Da & Huang, Junling, 2024. "The role of Xizang in China's transition towards a carbon-neutral power system," Energy, Elsevier, vol. 313(C).
    2. Shijin Wang & Yanqiang Wei, 2019. "Water resource system risk and adaptive management of the Chinese Heihe River Basin in Asian arid areas," Mitigation and Adaptation Strategies for Global Change, Springer, vol. 24(7), pages 1271-1292, October.
    3. Cook, David & Malinauskaite, Laura & Davíðsdóttir, Brynhildur & Ögmundardóttir, Helga, 2021. "Co-production processes underpinning the ecosystem services of glaciers and adaptive management in the era of climate change," Ecosystem Services, Elsevier, vol. 50(C).
    4. Mark D. Risser & William D. Collins & Michael F. Wehner & Travis A. O’Brien & Huanping Huang & Paul A. Ullrich, 2024. "Anthropogenic aerosols mask increases in US rainfall by greenhouse gases," Nature Communications, Nature, vol. 15(1), pages 1-15, December.
    5. Han, Shumin & Xin, Ping & Li, Huilong & Yang, Yonghui, 2022. "Evolution of agricultural development and land-water-food nexus in Central Asia," Agricultural Water Management, Elsevier, vol. 273(C).
    6. Alina Motschmann & Christian Huggel & Mark Carey & Holly Moulton & Noah Walker-Crawford & Randy Muñoz, 2020. "Losses and damages connected to glacier retreat in the Cordillera Blanca, Peru," Climatic Change, Springer, vol. 162(2), pages 837-858, September.
    7. Carolina Olid & Valentí Rodellas & Gerard Rocher-Ros & Jordi Garcia-Orellana & Marc Diego-Feliu & Aaron Alorda-Kleinglass & David Bastviken & Jan Karlsson, 2022. "Groundwater discharge as a driver of methane emissions from Arctic lakes," Nature Communications, Nature, vol. 13(1), pages 1-9, December.
    8. Jiahui Li & Xinliang Xu, 2023. "Glacier Change and Its Response to Climate Change in Western China," Land, MDPI, vol. 12(3), pages 1-13, March.
    9. Shannon G. Klein & Cassandra Roch & Carlos M. Duarte, 2024. "Systematic review of the uncertainty of coral reef futures under climate change," Nature Communications, Nature, vol. 15(1), pages 1-17, December.
    10. Daniel Ehrbar & Lukas Schmocker & Michael Doering & Marco Cortesi & Gérald Bourban & Robert M. Boes & David F. Vetsch, 2018. "Continuous Seasonal and Large-Scale Periglacial Reservoir Sedimentation," Sustainability, MDPI, vol. 10(9), pages 1-16, September.
    11. Muhammad Waqas Khan & Michael Lim & James Martin & Rebecca Lee & Deva Lynn Pokiak & Dustin Whalen, 2025. "Quantifying Permafrost Degradation Processes: Real‐Time Analysis Using Environment‐Based Particle Image Velocimetry and Weather Data," Permafrost and Periglacial Processes, John Wiley & Sons, vol. 36(2), pages 272-283, June.
    12. Jinglin Zhang & Wei Zhang & Shiwei Liu & Weiming Kong & Wei Zhang, 2022. "Cryosphere Services to Advance the National SDG Priorities in Himalaya-Karakoram Region," Sustainability, MDPI, vol. 14(5), pages 1-16, February.
    13. Yang Yang & Shiwei Liu & Cunde Xiao & Cuiyang Feng & Chenyu Li, 2021. "Evaluating Cryospheric Water Withdrawal and Virtual Water Flows in Tarim River Basin of China: An Input–Output Analysis," Sustainability, MDPI, vol. 13(14), pages 1-16, July.
    14. Wolfgang Jens-Henrik Meier & Perdita Pohle & Jussi Grießinger, 2022. "Climate Change and New Markets: Multi-Factorial Drivers of Recent Land-Use Change in The Semi-Arid Trans-Himalaya, Nepal," Land, MDPI, vol. 11(9), pages 1-26, September.
    15. Susheel Bhanu Busi & Massimo Bourquin & Stilianos Fodelianakis & Grégoire Michoud & Tyler J. Kohler & Hannes Peter & Paraskevi Pramateftaki & Michail Styllas & Matteo Tolosano & Vincent Staercke & Mar, 2022. "Genomic and metabolic adaptations of biofilms to ecological windows of opportunity in glacier-fed streams," Nature Communications, Nature, vol. 13(1), pages 1-15, December.
    16. Michel Wortmann & Doris Duethmann & Christoph Menz & Tobias Bolch & Shaochun Huang & Jiang Tong & Zbigniew W. Kundzewicz & Valentina Krysanova, 2022. "Projected climate change and its impacts on glaciers and water resources in the headwaters of the Tarim River, NW China/Kyrgyzstan," Climatic Change, Springer, vol. 171(3), pages 1-24, April.
    17. Qingshan He & Jianping Yang & Qiudong Zhao & Hongju Chen & Yanxia Wang & Hui Wang & Xin Wang, 2025. "Assessment of Water Resource Sustainability and Glacier Runoff Impact on the Northern and Southern Slopes of the Tianshan Mountains," Sustainability, MDPI, vol. 17(11), pages 1-25, May.
    18. Ekaterina P. Rets & Ivan N. Durmanov & Maria B. Kireeva & Andrew M. Smirnov & Viktor V. Popovnin, 2020. "Past ‘peak water’ in the North Caucasus: deglaciation drives a reduction in glacial runoff impacting summer river runoff and peak discharges," Climatic Change, Springer, vol. 163(4), pages 2135-2151, December.
    19. Muhammad Shafeeque & Yi Luo & Arfan Arshad & Sher Muhammad & Muhammad Ashraf & Quoc Bao Pham, 2023. "Assessment of climate change impacts on glacio-hydrological processes and their variations within critical zone," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 115(3), pages 2721-2748, February.
    20. Adrian Brügger & Robert Tobias & Fredy S. Monge-Rodríguez, 2021. "Public Perceptions of Climate Change in the Peruvian Andes," Sustainability, MDPI, vol. 13(5), pages 1-27, March.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:wly:perpro:v:36:y:2025:i:1:p:93-109. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Wiley Content Delivery (email available below). General contact details of provider: https://doi.org/10.1002/(ISSN)1099-1530 .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.