IDEAS home Printed from https://ideas.repec.org/a/gam/jsusta/v17y2025i10p4727-d1660802.html
   My bibliography  Save this article

Spatiotemporal Dynamics and Optimization Management of Ecosystem Service Flows in the Yangtze River Delta Urban Agglomeration, China

Author

Listed:
  • Huilan Jia

    (Department of Environmental Science and Engineering, Fudan University, Shanghai 200438, China)

  • Hongmin Chen

    (Department of Environmental Science and Engineering, Fudan University, Shanghai 200438, China)

Abstract

Ecosystem service flow (ESF) provides a new perspective for understanding the spatial transfer of ecosystem services across urban administrative boundaries, which is of significant importance for optimizing the regional ecological resource allocation. Taking the Yangtze River Delta (YRD) urban agglomeration as a case study, this study analyzed the spatiotemporal evolution characteristics of the ecosystem service value (ESV) and ESF in 41 cities of the region from 2000 to 2020, combining the modified equivalence factor method and the breaking-point model. It also revealed the regional division and evolution patterns of per area ESV and per capita GDP based on ESF in the YRD. The results showed that from 2000 to 2020, the overall ESV in the YRD exhibited a declining trend, with a spatial distribution showing higher values in the south and lower values in the north. Forest contributed over 50% of total ESV, while the value of hydrological regulation services consistently held the largest proportion and contributed the most significant growth. The overall decline in ESF was only 0.6%, with more than 70% of the flow occurring within provincial boundaries. Hangzhou, Taizhou (Zhejiang), and Chuzhou had the highest net outflows, while Jinhua, Changzhou, and Taizhou (Jiangsu) led in net inflows. The number of service-providing areas (SPAs) and service beneficiary areas (SBAs) remained relatively stable. Furthermore, a four-quadrant framework based on ESF, per area ESV, and per capita GDP was constructed, showing that the cities in the YRD mainly shifted between Quadrants I, II, and IV, with several cities transitioning from Quadrant III to II. Based on these findings, optimized management strategies for the coordinated economic-ecological development of the YRD are proposed.

Suggested Citation

  • Huilan Jia & Hongmin Chen, 2025. "Spatiotemporal Dynamics and Optimization Management of Ecosystem Service Flows in the Yangtze River Delta Urban Agglomeration, China," Sustainability, MDPI, vol. 17(10), pages 1-21, May.
  • Handle: RePEc:gam:jsusta:v:17:y:2025:i:10:p:4727-:d:1660802
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2071-1050/17/10/4727/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2071-1050/17/10/4727/
    Download Restriction: no
    ---><---

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jsusta:v:17:y:2025:i:10:p:4727-:d:1660802. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.