IDEAS home Printed from https://ideas.repec.org/a/gam/jsusta/v17y2025i10p4551-d1657146.html
   My bibliography  Save this article

Day-Ahead Electricity Price Forecasting for Sustainable Electricity Markets: A Multi-Objective Optimization Approach Combining Improved NSGA-II and RBF Neural Networks

Author

Listed:
  • Chunlong Li

    (Key Laboratory of Regional Multi-Energy System Integration and Control of Liaoning Province, Shenyang Institute of Engineering, Shenyang 110136, China)

  • Zhenghan Liu

    (State Grid Zhangjiakou Electric Power Supply Company, State Grid Jibei Electric Power Co., Ltd., Zhangjiakou 075000, China)

  • Guifan Zhang

    (State Grid Zhangjiakou Electric Power Supply Company, State Grid Jibei Electric Power Co., Ltd., Zhangjiakou 075000, China)

  • Yumiao Sun

    (Shenyang Institute of Engineering University Science Park, Shenyang 110136, China)

  • Shuang Qiu

    (Key Laboratory of Regional Multi-Energy System Integration and Control of Liaoning Province, Shenyang Institute of Engineering, Shenyang 110136, China)

  • Shiwei Song

    (Key Laboratory of Regional Multi-Energy System Integration and Control of Liaoning Province, Shenyang Institute of Engineering, Shenyang 110136, China)

  • Donglai Wang

    (Key Laboratory of Regional Multi-Energy System Integration and Control of Liaoning Province, Shenyang Institute of Engineering, Shenyang 110136, China
    Shenyang Institute of Engineering University Science Park, Shenyang 110136, China)

Abstract

The large-scale integration of renewable energy into power grids introduces substantial stochasticity in generation profiles and operational complexities due to electricity’s non-storable nature. These factors cause significant fluctuations in day-ahead market prices. Accurate price forecasting is crucial for market participants to optimize bidding strategies, mitigate renewable curtailment, and enhance grid sustainability. However, conventional methods struggle to address the nonlinearity, high-frequency dynamics, and multivariate dependencies inherent in electricity prices. This study proposes a novel multi-objective optimization framework combining an improved non-dominated sorting genetic algorithm II (NSGA-II) with a radial basis function (RBF) neural network. The improved NSGA-II algorithm mitigates issues of population diversity loss, slow convergence, and parameter adaptability by incorporating dynamic crowding distance calculations, adaptive crossover and mutation probabilities, and a refined elite retention strategy. Simultaneously, the RBF neural network balances prediction accuracy and model complexity through structural optimization. It is verified by the data of Singapore power market and compared with other forecasting models and error calculation methods. These results highlight the ability of the model to track the peak price of electricity and adapt to seasonal changes, indicating that the improved NSGA-II and RBF (NSGA-II-RBF) model has superior performance and provides a reliable decision support tool for sustainable operation of the power market.

Suggested Citation

  • Chunlong Li & Zhenghan Liu & Guifan Zhang & Yumiao Sun & Shuang Qiu & Shiwei Song & Donglai Wang, 2025. "Day-Ahead Electricity Price Forecasting for Sustainable Electricity Markets: A Multi-Objective Optimization Approach Combining Improved NSGA-II and RBF Neural Networks," Sustainability, MDPI, vol. 17(10), pages 1-31, May.
  • Handle: RePEc:gam:jsusta:v:17:y:2025:i:10:p:4551-:d:1657146
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2071-1050/17/10/4551/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2071-1050/17/10/4551/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Aisha Blfgeh & Hanadi Alkhudhayr, 2024. "A Machine Learning-Based Sustainable Energy Management of Wind Farms Using Bayesian Recurrent Neural Network," Sustainability, MDPI, vol. 16(19), pages 1-21, September.
    2. Liu, Jinqi & Wang, Jihong & Cardinal, Joel, 2022. "Evolution and reform of UK electricity market," Renewable and Sustainable Energy Reviews, Elsevier, vol. 161(C).
    3. Jiang, Ping & Nie, Ying & Wang, Jianzhou & Huang, Xiaojia, 2023. "Multivariable short-term electricity price forecasting using artificial intelligence and multi-input multi-output scheme," Energy Economics, Elsevier, vol. 117(C).
    4. Hadjout, D. & Torres, J.F. & Troncoso, A. & Sebaa, A. & Martínez-Álvarez, F., 2022. "Electricity consumption forecasting based on ensemble deep learning with application to the Algerian market," Energy, Elsevier, vol. 243(C).
    5. Roman V. Klyuev & Irbek D. Morgoev & Angelika D. Morgoeva & Oksana A. Gavrina & Nikita V. Martyushev & Egor A. Efremenkov & Qi Mengxu, 2022. "Methods of Forecasting Electric Energy Consumption: A Literature Review," Energies, MDPI, vol. 15(23), pages 1-33, November.
    6. Ghimire, Sujan & Deo, Ravinesh C. & Casillas-Pérez, David & Salcedo-Sanz, Sancho, 2024. "Two-step deep learning framework with error compensation technique for short-term, half-hourly electricity price forecasting," Applied Energy, Elsevier, vol. 353(PA).
    7. Lago, Jesus & Marcjasz, Grzegorz & De Schutter, Bart & Weron, Rafał, 2021. "Forecasting day-ahead electricity prices: A review of state-of-the-art algorithms, best practices and an open-access benchmark," Applied Energy, Elsevier, vol. 293(C).
    8. Sai, Wei & Pan, Zehua & Liu, Siyu & Jiao, Zhenjun & Zhong, Zheng & Miao, Bin & Chan, Siew Hwa, 2023. "Event-driven forecasting of wholesale electricity price and frequency regulation price using machine learning algorithms," Applied Energy, Elsevier, vol. 352(C).
    9. Orhan Altuğ Karabiber & George Xydis, 2019. "Electricity Price Forecasting in the Danish Day-Ahead Market Using the TBATS, ANN and ARIMA Methods," Energies, MDPI, vol. 12(5), pages 1-29, March.
    10. Keles, Dogan & Scelle, Jonathan & Paraschiv, Florentina & Fichtner, Wolf, 2016. "Extended forecast methods for day-ahead electricity spot prices applying artificial neural networks," Applied Energy, Elsevier, vol. 162(C), pages 218-230.
    11. Ioannidis, Filippos & Kosmidou, Kyriaki & Savva, Christos & Theodossiou, Panayiotis, 2021. "Electricity pricing using a periodic GARCH model with conditional skewness and kurtosis components," Energy Economics, Elsevier, vol. 95(C).
    12. Vasileios Laitsos & Georgios Vontzos & Dimitrios Bargiotas & Aspassia Daskalopulu & Lefteri H. Tsoukalas, 2024. "Data-Driven Techniques for Short-Term Electricity Price Forecasting through Novel Deep Learning Approaches with Attention Mechanisms," Energies, MDPI, vol. 17(7), pages 1-27, March.
    13. Loizidis, Stylianos & Kyprianou, Andreas & Georghiou, George E., 2024. "Electricity market price forecasting using ELM and Bootstrap analysis: A case study of the German and Finnish Day-Ahead markets," Applied Energy, Elsevier, vol. 363(C).
    14. Fraunholz, Christoph & Kraft, Emil & Keles, Dogan & Fichtner, Wolf, 2021. "Advanced price forecasting in agent-based electricity market simulation," Applied Energy, Elsevier, vol. 290(C).
    15. Bowen Zhang & Hongda Tian & Adam Berry & Hao Huang & A. Craig Roussac, 2024. "Experimental Comparison of Two Main Paradigms for Day-Ahead Average Carbon Intensity Forecasting in Power Grids: A Case Study in Australia," Sustainability, MDPI, vol. 16(19), pages 1-20, October.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Nie, Ying & Li, Ping & Wang, Jianzhou & Zhang, Lifang, 2024. "A novel multivariate electrical price bi-forecasting system based on deep learning, a multi-input multi-output structure and an operator combination mechanism," Applied Energy, Elsevier, vol. 366(C).
    2. Ghimire, Sujan & Deo, Ravinesh C. & Casillas-Pérez, David & Sharma, Ekta & Salcedo-Sanz, Sancho & Barua, Prabal Datta & Rajendra Acharya, U., 2024. "Half-hourly electricity price prediction with a hybrid convolution neural network-random vector functional link deep learning approach," Applied Energy, Elsevier, vol. 374(C).
    3. Marcjasz, Grzegorz & Narajewski, Michał & Weron, Rafał & Ziel, Florian, 2023. "Distributional neural networks for electricity price forecasting," Energy Economics, Elsevier, vol. 125(C).
    4. Loizidis, Stylianos & Kyprianou, Andreas & Georghiou, George E., 2024. "Electricity market price forecasting using ELM and Bootstrap analysis: A case study of the German and Finnish Day-Ahead markets," Applied Energy, Elsevier, vol. 363(C).
    5. Xu, Yuzhen & Huang, Xin & Zheng, Xidong & Zeng, Ziyang & Jin, Tao, 2024. "VMD-ATT-LSTM electricity price prediction based on grey wolf optimization algorithm in electricity markets considering renewable energy," Renewable Energy, Elsevier, vol. 236(C).
    6. Chen, Zhengganzhe & Zhang, Bin & Du, Chenglong & Yang, Chunhua & Gui, Weihua, 2025. "Outlier-adaptive-based non-crossing quantiles method for day-ahead electricity price forecasting," Applied Energy, Elsevier, vol. 382(C).
    7. Erik Heilmann & Janosch Henze & Heike Wetzel, 2021. "Machine learning in energy forecasts with an application to high frequency electricity consumption data," MAGKS Papers on Economics 202135, Philipps-Universität Marburg, Faculty of Business Administration and Economics, Department of Economics (Volkswirtschaftliche Abteilung).
    8. Alexandre Lucas & Konstantinos Pegios & Evangelos Kotsakis & Dan Clarke, 2020. "Price Forecasting for the Balancing Energy Market Using Machine-Learning Regression," Energies, MDPI, vol. 13(20), pages 1-16, October.
    9. Heilmann, Erik, 2023. "The impact of transparency policies on local flexibility markets in electric distribution networks," Utilities Policy, Elsevier, vol. 83(C).
    10. Ehsani, Behdad & Pineau, Pierre-Olivier & Charlin, Laurent, 2024. "Price forecasting in the Ontario electricity market via TriConvGRU hybrid model: Univariate vs. multivariate frameworks," Applied Energy, Elsevier, vol. 359(C).
    11. Haokun Su & Xiangang Peng & Hanyu Liu & Huan Quan & Kaitong Wu & Zhiwen Chen, 2022. "Multi-Step-Ahead Electricity Price Forecasting Based on Temporal Graph Convolutional Network," Mathematics, MDPI, vol. 10(14), pages 1-16, July.
    12. Apergis, Nicholas & Pan, Wei-Fong & Reade, James & Wang, Shixuan, 2023. "Modelling Australian electricity prices using indicator saturation," Energy Economics, Elsevier, vol. 120(C).
    13. Léonard Tschora & Erwan Pierre & Marc Plantevit & Céline Robardet, 2022. "Electricity price forecasting on the day-ahead market using machine learning," Post-Print hal-03621974, HAL.
    14. Kılıç Depren, Serpil & Kartal, Mustafa Tevfik & Ertuğrul, Hasan Murat & Depren, Özer, 2022. "The role of data frequency and method selection in electricity price estimation: Comparative evidence from Turkey in pre-pandemic and pandemic periods," Renewable Energy, Elsevier, vol. 186(C), pages 217-225.
    15. Dorel Mihai Paraschiv & Narciz Balasoiu & Souhir Ben-Amor & Raul Cristian Bag, 2023. "Hybridising Neurofuzzy Model the Seasonal Autoregressive Models for Electricity Price Forecasting on Germany’s Spot Market," The AMFITEATRU ECONOMIC journal, Academy of Economic Studies - Bucharest, Romania, vol. 25(63), pages 463-463, April.
    16. Wagner, Andreas & Ramentol, Enislay & Schirra, Florian & Michaeli, Hendrik, 2022. "Short- and long-term forecasting of electricity prices using embedding of calendar information in neural networks," Journal of Commodity Markets, Elsevier, vol. 28(C).
    17. Nametala, Ciniro Aparecido Leite & Faria, Wandry Rodrigues & Lage, Guilherme Guimarães & Pereira, Benvindo Rodrigues, 2023. "Analysis of hourly price granularity implementation in the Brazilian deregulated electricity contracting environment," Utilities Policy, Elsevier, vol. 81(C).
    18. Kohút, Roman & Klaučo, Martin & Kvasnica, Michal, 2025. "Unified carbon emissions and market prices forecasts of the power grid," Applied Energy, Elsevier, vol. 377(PC).
    19. Hakan Acaroğlu & Fausto Pedro García Márquez, 2021. "Comprehensive Review on Electricity Market Price and Load Forecasting Based on Wind Energy," Energies, MDPI, vol. 14(22), pages 1-23, November.
    20. Ramos, Paulo Vitor B. & Villela, Saulo Moraes & Silva, Walquiria N. & Dias, Bruno H., 2023. "Residential energy consumption forecasting using deep learning models," Applied Energy, Elsevier, vol. 350(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jsusta:v:17:y:2025:i:10:p:4551-:d:1657146. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.