IDEAS home Printed from https://ideas.repec.org/a/gam/jsusta/v16y2024i5p1856-d1344849.html
   My bibliography  Save this article

Impact of the Structural Parameters on the Performance of a Regenerative-Type Hydrogen Recirculation Blower for Vehicular Proton Exchange Membrane Fuel Cells

Author

Listed:
  • Xu Liang

    (School of Mechanical Engineering, Beijing Institute of Technology, Beijing 100081, China)

  • Huifang Kang

    (School of Mechanical Engineering, Beijing Institute of Technology, Beijing 100081, China)

  • Rui Zeng

    (School of Mechanical Engineering, Beijing Institute of Technology, Beijing 100081, China)

  • Yue Pang

    (School of Mechanical Engineering, Beijing Institute of Technology, Beijing 100081, China)

  • Yun Yang

    (Shandong Kaigrisen Energy Technology Co., Ltd., Jinan 264006, China)

  • Yunlu Qiu

    (Shandong Kaigrisen Energy Technology Co., Ltd., Jinan 264006, China)

  • Yuanxu Tao

    (Shandong Kaigrisen Energy Technology Co., Ltd., Jinan 264006, China)

  • Jun Shen

    (School of Mechanical Engineering, Beijing Institute of Technology, Beijing 100081, China)

Abstract

The compact structure and stable performance of regenerative blowers at small flow rates render them attractive for the development of hydrogen recirculation devices for fuel cells. However, its optimization of structural parameters has not been yet reported in the literature. Along these lines, in this work, a mechanistic study was carried out in terms of examining the role of the flow channel structure on the performance of a regenerative-type hydrogen recirculation blower for the fabrication of automotive fuel cells. A three-dimensional computational fluid dynamics (CFDs) model of the regenerative blower was established, and the accuracy of the proposed model was verified through experimental data. The impact of structural parameter interactions on the performance of the regenerative blower was investigated using CFD technology, response surface methodology (RSM), and genetic algorithm (GA). First, the range of the structural parameters was selected according to the actual operation, and the influence of a single geometric factor on the efficiency was thoroughly investigated using CFD simulation. Then, a second-order regression model was successfully established using RSM. The response surface model was solved using GA to obtain the optimized geometric parameters and the reliability of the GA optimization was verified by performing CFD simulations. From our analysis, it was demonstrated that the interaction of the blade angle and impeller inner diameter has a significant impact on efficiency. The entropy generation analysis showed also that the internal flow loss of the optimized regenerative blower was significantly reduced, and the design point efficiency reached 51.7%, which was significantly improved. Our work provides a novel solution for the design of a recirculation blower and offers a reference for the optimization of regenerative-type hydrogen blowers.

Suggested Citation

  • Xu Liang & Huifang Kang & Rui Zeng & Yue Pang & Yun Yang & Yunlu Qiu & Yuanxu Tao & Jun Shen, 2024. "Impact of the Structural Parameters on the Performance of a Regenerative-Type Hydrogen Recirculation Blower for Vehicular Proton Exchange Membrane Fuel Cells," Sustainability, MDPI, vol. 16(5), pages 1-28, February.
  • Handle: RePEc:gam:jsusta:v:16:y:2024:i:5:p:1856-:d:1344849
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2071-1050/16/5/1856/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2071-1050/16/5/1856/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Peng Yin & Jinzhou Chen & Hongwen He, 2023. "Control of Oxygen Excess Ratio for a PEMFC Air Supply System by Intelligent PID Methods," Sustainability, MDPI, vol. 15(11), pages 1-20, May.
    2. Muhammad Asyraf Azni & Rasyikah Md Khalid & Umi Azmah Hasran & Siti Kartom Kamarudin, 2023. "Review of the Effects of Fossil Fuels and the Need for a Hydrogen Fuel Cell Policy in Malaysia," Sustainability, MDPI, vol. 15(5), pages 1-16, February.
    3. Long Li & Shuqi Wang & Shengxi Zhang & Ding Liu & Shengbin Ma, 2023. "The Hydrogen Energy Infrastructure Location Selection Model: A Hybrid Fuzzy Decision-Making Approach," Sustainability, MDPI, vol. 15(13), pages 1-20, June.
    4. Renzo Seminario-Córdova & Raúl Rojas-Ortega, 2023. "Renewable Energy Sources and Energy Production: A Bibliometric Analysis of the Last Five Years," Sustainability, MDPI, vol. 15(13), pages 1-22, July.
    5. Adeola Akinpelu & Md Shafiul Alam & Md Shafiullah & Syed Masiur Rahman & Fahad Saleh Al-Ismail, 2023. "Greenhouse Gas Emission Dynamics of Saudi Arabia: Potential of Hydrogen Fuel for Emission Footprint Reduction," Sustainability, MDPI, vol. 15(7), pages 1-14, March.
    6. Rudravaram Venkatasatish & Dhanamjayulu Chittathuru, 2023. "Coyote Optimization Algorithm-Based Energy Management Strategy for Fuel Cell Hybrid Power Systems," Sustainability, MDPI, vol. 15(12), pages 1-21, June.
    7. Pei, Pucheng & Ren, Peng & Li, Yuehua & Wu, Ziyao & Chen, Dongfang & Huang, Shangwei & Jia, Xiaoning, 2019. "Numerical studies on wide-operating-range ejector based on anodic pressure drop characteristics in proton exchange membrane fuel cell system," Applied Energy, Elsevier, vol. 235(C), pages 729-738.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Mohammed Yousri Silaa & Oscar Barambones & José Antonio Cortajarena & Patxi Alkorta & Aissa Bencherif, 2023. "PEMFC Current Control Using a Novel Compound Controller Enhanced by the Black Widow Algorithm: A Comprehensive Simulation Study," Sustainability, MDPI, vol. 15(18), pages 1-23, September.
    2. Renzo Seminario-Córdova, 2023. "Latin America towards Sustainability through Renewable Energies: A Systematic Review," Energies, MDPI, vol. 16(21), pages 1-22, November.
    3. Hegazy Rezk & Mokhtar Aly & Rania M. Ghoniem, 2023. "Robust Fuzzy Logic MPPT Using Gradient-Based Optimization for PEMFC Power System," Sustainability, MDPI, vol. 15(18), pages 1-18, September.
    4. Hegazy Rezk & Tabbi Wilberforce & A. G. Olabi & Rania M. Ghoniem & Mohammad Ali Abdelkareem & Enas Taha Sayed, 2023. "Fuzzy Modelling and Optimization to Decide Optimal Parameters of the PEMFC," Energies, MDPI, vol. 16(12), pages 1-16, June.
    5. Maksymilian Mądziel, 2024. "Energy Modeling for Electric Vehicles Based on Real Driving Cycles: An Artificial Intelligence Approach for Microscale Analyses," Energies, MDPI, vol. 17(5), pages 1-22, February.
    6. Li Chen & Keda Xu & Zuyong Yang & Zhen Yan & Zuomin Dong, 2022. "Optimal Design and Operation of Dual-Ejector PEMFC Hydrogen Supply and Circulation System," Energies, MDPI, vol. 15(15), pages 1-19, July.
    7. Kuo, Jenn-Kun & Hsieh, Chun-Yao, 2021. "Numerical investigation into effects of ejector geometry and operating conditions on hydrogen recirculation ratio in 80 kW PEM fuel cell system," Energy, Elsevier, vol. 233(C).
    8. Wenli Dong & Lihan Lin, 2023. "Evaluating the Whole-Process Management of Future Communities Based on Integrated Fuzzy Decision Methods," Sustainability, MDPI, vol. 15(23), pages 1-23, November.
    9. Song, Yajie & Wang, Xinli & Wang, Lei & Pan, Fengwen & Chen, Wenmiao & Xi, Fuqiang, 2021. "A twin-nozzle ejector for hydrogen recirculation in wide power operation of polymer electrolyte membrane fuel cell system," Applied Energy, Elsevier, vol. 300(C).
    10. Amjad Ali, 2023. "Transforming Saudi Arabia’s Energy Landscape towards a Sustainable Future: Progress of Solar Photovoltaic Energy Deployment," Sustainability, MDPI, vol. 15(10), pages 1-21, May.
    11. Abdessamad Intidam & Hassan El Fadil & Halima Housny & Zakariae El Idrissi & Abdellah Lassioui & Soukaina Nady & Abdeslam Jabal Laafou, 2023. "Development and Experimental Implementation of Optimized PI-ANFIS Controller for Speed Control of a Brushless DC Motor in Fuel Cell Electric Vehicles," Energies, MDPI, vol. 16(11), pages 1-23, May.
    12. Shaik Nyamathulla & Dhanamjayulu Chittathuru, 2023. "A Review of Multilevel Inverter Topologies for Grid-Connected Sustainable Solar Photovoltaic Systems," Sustainability, MDPI, vol. 15(18), pages 1-44, September.
    13. Jianmei Feng & Jiquan Han & Zihui Pang & Xueyuan Peng, 2023. "Designing Hydrogen Recirculation Ejectors for Proton Exchange Membrane Fuel Cell Systems," Energies, MDPI, vol. 16(3), pages 1-10, January.
    14. Mana Abusaq & Mohamed A. Zohdy, 2024. "Optimizing Renewable Energy Integration through Innovative Hybrid Microgrid Design: A Case Study of Najran Secondary Industrial Institute in Saudi Arabia," Clean Technol., MDPI, vol. 6(2), pages 1-21, March.
    15. Tashtoush, Bourhan M. & Al-Nimr, Moh'd A. & Khasawneh, Mohammad A., 2019. "A comprehensive review of ejector design, performance, and applications," Applied Energy, Elsevier, vol. 240(C), pages 138-172.
    16. Sergey Zhironkin & Elena Dotsenko, 2023. "Review of Transition from Mining 4.0 to 5.0 in Fossil Energy Sources Production," Energies, MDPI, vol. 16(15), pages 1-35, August.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jsusta:v:16:y:2024:i:5:p:1856-:d:1344849. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.