IDEAS home Printed from https://ideas.repec.org/a/gam/jsusta/v16y2024i2p803-d1320855.html
   My bibliography  Save this article

A Bus Network Design Model under Demand Variation: A Case Study of the Management of Rome’s Bus Network

Author

Listed:
  • Andrea Gemma

    (Department of Civil, Computer Science and Aeronautical Technologies Engineering, Roma Tre University, 00146 Rome, Italy)

  • Ernesto Cipriani

    (Department of Civil, Computer Science and Aeronautical Technologies Engineering, Roma Tre University, 00146 Rome, Italy)

  • Umberto Crisalli

    (Department of Enterprise Engineering, Tor Vergata University of Rome, 00133 Rome, Italy)

  • Livia Mannini

    (Department of Civil, Computer Science and Aeronautical Technologies Engineering, Roma Tre University, 00146 Rome, Italy)

  • Marco Petrelli

    (Department of Civil, Computer Science and Aeronautical Technologies Engineering, Roma Tre University, 00146 Rome, Italy)

Abstract

This paper proposed a methodology to design bus transit networks that can be consistently adjusted according to demand variations both in level and distribution. The methodology aims to support the activities of service providers in optimizing the service capacity of the bus network according to a system-wide analysis. It stems from the changes imposed by the COVID-19 pandemic. Such an experience has imposed a rethinking of the methodology used for the optimal design of robust transit network services that are easy-to-adapt to demand variations without redesigning the whole network every time. Starting from an existing model, this design methodology is articulated in two parts: the first part for solving the problem with the maximum level of transit demand, aiming at giving an upper bound to the solution, and the second part, where the network is optimized for other specific transit demands. This method has been applied to a real context in the city of Rome, considering two levels of demand taken from COVID-19 experiences. They are characterized by the application of different policies regarding different timings for shopping and schools’ openings as well as by policies on smart working. The results show the effectiveness of the proposed methodology to design robust transit networks suited to comply with large demand variations. Moreover, the procedure is suitable and easy to implement, in order to adapt quickly to changes in demand without having to modify line routes, but adapting them in an optimal way, even when dealing with realistic-sized transit networks.

Suggested Citation

  • Andrea Gemma & Ernesto Cipriani & Umberto Crisalli & Livia Mannini & Marco Petrelli, 2024. "A Bus Network Design Model under Demand Variation: A Case Study of the Management of Rome’s Bus Network," Sustainability, MDPI, vol. 16(2), pages 1-13, January.
  • Handle: RePEc:gam:jsusta:v:16:y:2024:i:2:p:803-:d:1320855
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2071-1050/16/2/803/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2071-1050/16/2/803/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Spiess, Heinz & Florian, Michael, 1989. "Optimal strategies: A new assignment model for transit networks," Transportation Research Part B: Methodological, Elsevier, vol. 23(2), pages 83-102, April.
    2. Szeto, W.Y. & Jiang, Y., 2014. "Transit route and frequency design: Bi-level modeling and hybrid artificial bee colony algorithm approach," Transportation Research Part B: Methodological, Elsevier, vol. 67(C), pages 235-263.
    3. Farahani, Reza Zanjirani & Miandoabchi, Elnaz & Szeto, W.Y. & Rashidi, Hannaneh, 2013. "A review of urban transportation network design problems," European Journal of Operational Research, Elsevier, vol. 229(2), pages 281-302.
    4. Yuan Liu & Heshan Zhang & Tao Xu & Yaping Chen, 2022. "A Heuristic Algorithm Based on Travel Demand for Transit Network Design," Sustainability, MDPI, vol. 14(17), pages 1-17, September.
    5. Javier Durán-Micco & Pieter Vansteenwegen, 2022. "A survey on the transit network design and frequency setting problem," Public Transport, Springer, vol. 14(1), pages 155-190, March.
    6. Wang, David Z.W. & Lo, Hong K., 2010. "Global optimum of the linearized network design problem with equilibrium flows," Transportation Research Part B: Methodological, Elsevier, vol. 44(4), pages 482-492, May.
    7. An, Kun & Lo, Hong K., 2016. "Two-phase stochastic program for transit network design under demand uncertainty," Transportation Research Part B: Methodological, Elsevier, vol. 84(C), pages 157-181.
    8. G. F. Newell, 1979. "Some Issues Relating to the Optimal Design of Bus Routes," Transportation Science, INFORMS, vol. 13(1), pages 20-35, February.
    9. Erfan Hassannayebi & Seyed Hessameddin Zegordi & Mohammad Reza Amin-Naseri & Masoud Yaghini, 2018. "Optimizing headways for urban rail transit services using adaptive particle swarm algorithms," Public Transport, Springer, vol. 10(1), pages 23-62, May.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Nayan, Ashish & Wang, David Z.W., 2017. "Optimal bus transit route packaging in a privatized contracting regime," Transportation Research Part A: Policy and Practice, Elsevier, vol. 97(C), pages 146-157.
    2. Tian, Qingyun & Wang, David Z.W. & Lin, Yun Hui, 2021. "Service operation design in a transit network with congested common lines," Transportation Research Part B: Methodological, Elsevier, vol. 144(C), pages 81-102.
    3. Abdulkerim Benli & İbrahim Akgün, 2023. "A Multi-Objective Mathematical Programming Model for Transit Network Design and Frequency Setting Problem," Mathematics, MDPI, vol. 11(21), pages 1-23, October.
    4. Liu, Jiangtao & Zhou, Xuesong, 2016. "Capacitated transit service network design with boundedly rational agents," Transportation Research Part B: Methodological, Elsevier, vol. 93(PA), pages 225-250.
    5. Liang, Jinpeng & Wu, Jianjun & Gao, Ziyou & Sun, Huijun & Yang, Xin & Lo, Hong K., 2019. "Bus transit network design with uncertainties on the basis of a metro network: A two-step model framework," Transportation Research Part B: Methodological, Elsevier, vol. 126(C), pages 115-138.
    6. Ahern, Zeke & Paz, Alexander & Corry, Paul, 2022. "Approximate multi-objective optimization for integrated bus route design and service frequency setting," Transportation Research Part B: Methodological, Elsevier, vol. 155(C), pages 1-25.
    7. Liu, Haoxiang & Szeto, W.Y. & Long, Jiancheng, 2019. "Bike network design problem with a path-size logit-based equilibrium constraint: Formulation, global optimization, and matheuristic," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 127(C), pages 284-307.
    8. Yiduo Huang & Zuojun Max Shen, 2021. "Optimizing timetable and network reopen plans for public transportation networks during a COVID19-like pandemic," Papers 2109.03940, arXiv.org.
    9. Qingyun Tian & Yun Hui Lin & David Z. W. Wang, 2021. "Autonomous and conventional bus fleet optimization for fixed-route operations considering demand uncertainty," Transportation, Springer, vol. 48(5), pages 2735-2763, October.
    10. Cancela, Héctor & Mauttone, Antonio & Urquhart, María E., 2015. "Mathematical programming formulations for transit network design," Transportation Research Part B: Methodological, Elsevier, vol. 77(C), pages 17-37.
    11. Sunhyung Yoo & Jinwoo Brian Lee & Hoon Han, 2023. "A Reinforcement Learning approach for bus network design and frequency setting optimisation," Public Transport, Springer, vol. 15(2), pages 503-534, June.
    12. Christina Iliopoulou & Konstantinos Kepaptsoglou & Eleni Vlahogianni, 2019. "Metaheuristics for the transit route network design problem: a review and comparative analysis," Public Transport, Springer, vol. 11(3), pages 487-521, October.
    13. Javier Durán-Micco & Pieter Vansteenwegen, 2022. "A survey on the transit network design and frequency setting problem," Public Transport, Springer, vol. 14(1), pages 155-190, March.
    14. Javier Duran & Lorena Pradenas & Victor Parada, 2019. "Transit network design with pollution minimization," Public Transport, Springer, vol. 11(1), pages 189-210, June.
    15. Duran-Micco, Javier & Vermeir, Evert & Vansteenwegen, Pieter, 2020. "Considering emissions in the transit network design and frequency setting problem with a heterogeneous fleet," European Journal of Operational Research, Elsevier, vol. 282(2), pages 580-592.
    16. Arbex, Renato Oliveira & da Cunha, Claudio Barbieri, 2015. "Efficient transit network design and frequencies setting multi-objective optimization by alternating objective genetic algorithm," Transportation Research Part B: Methodological, Elsevier, vol. 81(P2), pages 355-376.
    17. David Canca & Belén Navarro-Carmona & Gabriel Villa & Alejandro Zarzo, 2023. "A Multilayer Network Approach for the Bimodal Bus–Pedestrian Line Planning Problem," Mathematics, MDPI, vol. 11(19), pages 1-36, October.
    18. Wang, Jian & He, Xiaozheng & Peeta, Srinivas & Wang, Wei, 2022. "Globally convergent line search algorithm with Euler-based step size-determination method for continuous network design problem," Transportation Research Part B: Methodological, Elsevier, vol. 163(C), pages 119-144.
    19. Amirali Zarrinmehr & Mahmoud Saffarzadeh & Seyedehsan Seyedabrishami & Yu Marco Nie, 2016. "A path-based greedy algorithm for multi-objective transit routes design with elastic demand," Public Transport, Springer, vol. 8(2), pages 261-293, September.
    20. Farahani, Reza Zanjirani & Miandoabchi, Elnaz & Szeto, W.Y. & Rashidi, Hannaneh, 2013. "A review of urban transportation network design problems," European Journal of Operational Research, Elsevier, vol. 229(2), pages 281-302.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jsusta:v:16:y:2024:i:2:p:803-:d:1320855. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.