IDEAS home Printed from https://ideas.repec.org/a/gam/jsusta/v16y2024i2p626-d1316936.html
   My bibliography  Save this article

Passive Building Energy Saving: Building Envelope Retrofitting Measures to Reduce Cooling Requirements for a Residential Building in an Arid Climate

Author

Listed:
  • Mohamed H. Elnabawi

    (Architectural Engineering Department, College of Engineering, United Arab Emirates University, Al Ain P.O. Box 15551, United Arab Emirates)

  • Esmail Saber

    (School of Built Environment and Architecture, London South Bank University, London SE1 0AA, UK)

  • Lindita Bande

    (Architectural Engineering Department, College of Engineering, United Arab Emirates University, Al Ain P.O. Box 15551, United Arab Emirates)

Abstract

In arid climates, a significant portion of the urban peak energy demand is dedicated to cooling and air-conditioning during the summer. The rapid urbanization rates in developing countries, particularly in the Gulf Cooperation Council (GCC), have intensified the pressure on energy resources to meet the indoor comfort needs of residents. As a result, there has been a substantial increase in energy demand, with a 2.3% rise recorded in 2018. Electricity consumption in residential buildings accounted for over 48.6% of the total electricity consumption. The choice of building fabrics used in a residential building can significantly impact the building’s passive performance and carbon footprint. This study aimed to enhance our understanding of how specific fabric details influence cooling energy usage in arid climates. To achieve this, a validation simulation model was initially created as a base case for a residential housing typology in Al Ain, UAE. This was followed by a parametric energy evaluation of various building envelope features. The evaluation was based on the reduction of yearly cooling load energy. The simulation results indicate that incorporating 50 mm of expanded polystyrene insulation into the outside walls significantly reduced energy consumption for cooling requirements in the arid UAE climate. Furthermore, no substantial difference was observed in the various roofing choices, including cool and green roofs, gravels, and sand roofs. Additionally, we concluded that the total solar energy transmittance (g-value) of windows played a more significant role than thermal transmittance (U-value) in reducing solar heat gain within the spaces. These findings should guide strategic decisions on building envelope upgrading for sustainable societies.

Suggested Citation

  • Mohamed H. Elnabawi & Esmail Saber & Lindita Bande, 2024. "Passive Building Energy Saving: Building Envelope Retrofitting Measures to Reduce Cooling Requirements for a Residential Building in an Arid Climate," Sustainability, MDPI, vol. 16(2), pages 1-19, January.
  • Handle: RePEc:gam:jsusta:v:16:y:2024:i:2:p:626-:d:1316936
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2071-1050/16/2/626/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2071-1050/16/2/626/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Streltsov, Artem & Malof, Jordan M. & Huang, Bohao & Bradbury, Kyle, 2020. "Estimating residential building energy consumption using overhead imagery," Applied Energy, Elsevier, vol. 280(C).
    2. Taleb, Hanan M. & Sharples, Steve, 2011. "Developing sustainable residential buildings in Saudi Arabia: A case study," Applied Energy, Elsevier, vol. 88(1), pages 383-391, January.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Alyami, Saleh. H. & Rezgui, Yacine & Kwan, Alan, 2013. "Developing sustainable building assessment scheme for Saudi Arabia: Delphi consultation approach," Renewable and Sustainable Energy Reviews, Elsevier, vol. 27(C), pages 43-54.
    2. Mohammad S. M. Almulhim & Dexter V. L. Hunt & Chris D. F. Rogers, 2020. "A Resilience and Environmentally Sustainable Assessment Framework (RESAF) for Domestic Building Materials in Saudi Arabia," Sustainability, MDPI, vol. 12(8), pages 1-24, April.
    3. Salah Beni Hamed & Mouna Ben Hamed & Lassaad Sbita, 2022. "Robust Voltage Control of a Buck DC-DC Converter: A Sliding Mode Approach," Energies, MDPI, vol. 15(17), pages 1-21, August.
    4. Zhou, Xiao & Huang, Zhou & Scheuer, Bronte & Wang, Han & Zhou, Guoqing & Liu, Yu, 2023. "High-resolution estimation of building energy consumption at the city level," Energy, Elsevier, vol. 275(C).
    5. Wahhaj Ahmed & Ayman Alazazmeh & Muhammad Asif, 2022. "Energy and Water Saving Potential in Commercial Buildings: A Retrofit Case Study," Sustainability, MDPI, vol. 15(1), pages 1-17, December.
    6. Mohammed Awad Abuhussain & Nedhal Al-Tamimi & Badr S. Alotaibi & Manoj Kumar Singh & Sanjay Kumar & Rana Elnaklah, 2022. "Impact of Courtyard Concept on Energy Efficiency and Home Privacy in Saudi Arabia," Energies, MDPI, vol. 15(15), pages 1-18, August.
    7. Ahmed, Wahhaj & Asif, Muhammad, 2021. "A critical review of energy retrofitting trends in residential buildings with particular focus on the GCC countries," Renewable and Sustainable Energy Reviews, Elsevier, vol. 144(C).
    8. Areej A. Malibari & Daniyal Alghazzawi & Maha M. A. Lashin, 2021. "Coalition Formation among the Cooperative Agents for Efficient Energy Consumption," Sustainability, MDPI, vol. 13(15), pages 1-18, August.
    9. Duan, Haiyan & Chen, Siyan & Song, Junnian, 2022. "Characterizing regional building energy consumption under joint climatic and socioeconomic impacts," Energy, Elsevier, vol. 245(C).
    10. Yuan, Jianjuan & Huang, Ke & Lu, Shilei & Zhang, Ji & Han, Zhao & Zhou, Zhihua, 2022. "Analysis of influencing factors on heat consumption of large residential buildings with different occupancy rates-Tianjin case study," Energy, Elsevier, vol. 238(PC).
    11. Marian Ahmed & DN Ayesha Mushtaq, 2019. "To Study Relationships Between Men and It’s Environments by Enlivening Bedouins Heritage in Modern Dubai," Current Research in Diabetes & Obesity Journal, Juniper Publishers Inc., vol. 12(3), pages 49-63, October.
    12. Aldossary, Naief A. & Rezgui, Yacine & Kwan, Alan, 2015. "Consensus-based low carbon domestic design framework for sustainable homes," Renewable and Sustainable Energy Reviews, Elsevier, vol. 51(C), pages 417-432.
    13. Mao, Hongzhi & Chen, Xie & Luo, Yongqiang & Deng, Jie & Tian, Zhiyong & Yu, Jinghua & Xiao, Yimin & Fan, Jianhua, 2023. "Advances and prospects on estimating solar photovoltaic installation capacity and potential based on satellite and aerial images," Renewable and Sustainable Energy Reviews, Elsevier, vol. 179(C).
    14. Mansouri, Noura Y. & Crookes, Roy J. & Korakianitis, Theodosios, 2013. "A projection of energy consumption and carbon dioxide emissions in the electricity sector for Saudi Arabia: The case for carbon capture and storage and solar photovoltaics," Energy Policy, Elsevier, vol. 63(C), pages 681-695.
    15. Rosenfelder, Markus & Wussow, Moritz & Gust, Gunther & Cremades, Roger & Neumann, Dirk, 2021. "Predicting residential electricity consumption using aerial and street view images," Applied Energy, Elsevier, vol. 301(C).
    16. Purna Prakash Kasaraneni & Venkata Pavan Kumar Yellapragada & Ganesh Lakshmana Kumar Moganti & Aymen Flah, 2022. "Analytical Enumeration of Redundant Data Anomalies in Energy Consumption Readings of Smart Buildings with a Case Study of Darmstadt Smart City in Germany," Sustainability, MDPI, vol. 14(17), pages 1-24, August.
    17. Nasser Jameel Al-Shamayleh, 2024. "The Ten-Year Guarantee of the Contractor and the Engineer on Ensuring the Durability of the Building in the System of Applying the Saudi Building Code: A Comparative Study," Academic Journal of Interdisciplinary Studies, Richtmann Publishing Ltd, vol. 13, March.
    18. Abdul Mujeebu, Muhammad & Alshamrani, Othman Subhi, 2016. "Prospects of energy conservation and management in buildings – The Saudi Arabian scenario versus global trends," Renewable and Sustainable Energy Reviews, Elsevier, vol. 58(C), pages 1647-1663.
    19. Olofsson, Thomas & Mahlia, T.M.I., 2012. "Modeling and simulation of the energy use in an occupied residential building in cold climate," Applied Energy, Elsevier, vol. 91(1), pages 432-438.
    20. Amir A. Imam & Yusuf A. Al-Turki & Sreerama Kumar R., 2019. "Techno-Economic Feasibility Assessment of Grid-Connected PV Systems for Residential Buildings in Saudi Arabia—A Case Study," Sustainability, MDPI, vol. 12(1), pages 1-25, December.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jsusta:v:16:y:2024:i:2:p:626-:d:1316936. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.