IDEAS home Printed from https://ideas.repec.org/a/gam/jsusta/v16y2024i24p10926-d1542881.html
   My bibliography  Save this article

The Impact of Thermal Energy Storage on the Emission of Particulate Pollutants into the Atmosphere

Author

Listed:
  • Ryszard Zwierzchowski

    (Faculty of Building Services, Hydro and Environmental Engineering, Warsaw University of Technology, 20 Nowowiejska Street, 00-653 Warsaw, Poland)

  • Marlena Ziomacka

    (Supreme Audit Office, 57 Filtrowa Street, 02-056 Warsaw, Poland)

  • Olgierd Niemyjski

    (Faculty of Building Services, Hydro and Environmental Engineering, Warsaw University of Technology, 20 Nowowiejska Street, 00-653 Warsaw, Poland)

Abstract

To improve the energy, operational, and ecological efficiency of a district heating system (DHS) powered by a combined heat and power (CHP) plant or a heating plant, thermal energy storage (TES) should be used. The presented paper examines the impact of the use and operation of TES built in a CHP plant supplying a large DHS, based on the amount of particulates emitted into the atmosphere. Detailed research was carried out for the Siekierki–Warsaw and Białystok CHP plants in Poland. The analysis helped to determine the factors affecting the reduction in pollutant emissions and the volume of the energy effect of using TES in the CHP plant. In order to objectify the results of the comparative analysis of the impact of TES in the CHP plant on the emission of particulates, the so-called comparative index (CI) was introduced. The CI takes into account the volume of electricity and heat production and climatic conditions in the analyzed time periods. The CI for the analyzed years should have a similar value so that the results of the comparative analysis are fully representative. This condition is met for the CHP plant and DHS of Białystok, so the detailed results of the analysis are presented for this facility. As a result of the application of TES in the Białystok CHP plant, significant environmental effects related to the reduction in particulate emissions have been achieved; for example, the total amount of annual particulate matter (PM) emission (PM 10 and PM 2.5 ) has been reduced by 27% and the maximum emission by 29%. On the other hand, the average decrease in particulate emissions in the heating season varied in the range of 10–50%, while in the summer season, the values of particulate emissions were at a comparable level. A significant decrease in annual and one-hour average concentrations for PM 10 and PM 2.5 and particulate fallout for these two analyzed years was also found. The use of TES to reduce the occurrence and nuisance of the smog phenomenon, the main components of which are PM, is proposed, and selected models of forecasting concentrations of pollutants in the air, including particulate emissions, are presented in order to implement this type of activity.

Suggested Citation

  • Ryszard Zwierzchowski & Marlena Ziomacka & Olgierd Niemyjski, 2024. "The Impact of Thermal Energy Storage on the Emission of Particulate Pollutants into the Atmosphere," Sustainability, MDPI, vol. 16(24), pages 1-21, December.
  • Handle: RePEc:gam:jsusta:v:16:y:2024:i:24:p:10926-:d:1542881
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2071-1050/16/24/10926/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2071-1050/16/24/10926/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Bogdan, Željko & Kopjar, Damir, 2006. "Improvement of the cogeneration plant economy by using heat accumulator," Energy, Elsevier, vol. 31(13), pages 2285-2292.
    2. Verda, Vittorio & Colella, Francesco, 2011. "Primary energy savings through thermal storage in district heating networks," Energy, Elsevier, vol. 36(7), pages 4278-4286.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Guang Zeng & Shijie Hou & Qiankun Guo & Yongtie Cai & Mobei Xu, 2025. "Advances in Solid Particle Thermal Energy Storage: A Comprehensive Review," Sustainability, MDPI, vol. 17(16), pages 1-25, August.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Capuder, Tomislav & Mancarella, Pierluigi, 2014. "Techno-economic and environmental modelling and optimization of flexible distributed multi-generation options," Energy, Elsevier, vol. 71(C), pages 516-533.
    2. Kocijel, Lino & Mrzljak, Vedran & Glažar, Vladimir, 2020. "Numerical analysis of geometrical and process parameters influence on temperature stratification in a large volumetric heat storage tank," Energy, Elsevier, vol. 194(C).
    3. González-Pino, I. & Pérez-Iribarren, E. & Campos-Celador, A. & Terés-Zubiaga, J., 2020. "Analysis of the integration of micro-cogeneration units in space heating and domestic hot water plants," Energy, Elsevier, vol. 200(C).
    4. Barbieri, Enrico Saverio & Melino, Francesco & Morini, Mirko, 2012. "Influence of the thermal energy storage on the profitability of micro-CHP systems for residential building applications," Applied Energy, Elsevier, vol. 97(C), pages 714-722.
    5. Marguerite, C. & Andresen, G.B. & Dahl, M., 2018. "Multi-criteria analysis of storages integration and operation solutions into the district heating network of Aarhus – A simulation case study," Energy, Elsevier, vol. 158(C), pages 81-88.
    6. Buoro, Dario & Pinamonti, Piero & Reini, Mauro, 2014. "Optimization of a Distributed Cogeneration System with solar district heating," Applied Energy, Elsevier, vol. 124(C), pages 298-308.
    7. Streckiene, Giedre & Martinaitis, Vytautas & Andersen, Anders N. & Katz, Jonas, 2009. "Feasibility of CHP-plants with thermal stores in the German spot market," Applied Energy, Elsevier, vol. 86(11), pages 2308-2316, November.
    8. Zhang, Menglin & Wu, Qiuwei & Wen, Jinyu & Pan, Bo & Qi, Shiqiang, 2020. "Two-stage stochastic optimal operation of integrated electricity and heat system considering reserve of flexible devices and spatial-temporal correlation of wind power," Applied Energy, Elsevier, vol. 275(C).
    9. Francesco Neirotti & Michel Noussan & Stefano Riverso & Giorgio Manganini, 2019. "Analysis of Different Strategies for Lowering the Operation Temperature in Existing District Heating Networks," Energies, MDPI, vol. 12(2), pages 1-17, January.
    10. Arteconi, A. & Hewitt, N.J. & Polonara, F., 2012. "State of the art of thermal storage for demand-side management," Applied Energy, Elsevier, vol. 93(C), pages 371-389.
    11. Joana Verheyen & Christian Thommessen & Jürgen Roes & Harry Hoster, 2025. "Effects on the Unit Commitment of a District Heating System Due to Seasonal Aquifer Thermal Energy Storage and Solar Thermal Integration," Energies, MDPI, vol. 18(3), pages 1-33, January.
    12. Bracco, Stefano & Delfino, Federico & Pampararo, Fabio & Robba, Michela & Rossi, Mansueto, 2013. "The University of Genoa smart polygeneration microgrid test-bed facility: The overall system, the technologies and the research challenges," Renewable and Sustainable Energy Reviews, Elsevier, vol. 18(C), pages 442-459.
    13. Powell, Kody M. & Kim, Jong Suk & Cole, Wesley J. & Kapoor, Kriti & Mojica, Jose L. & Hedengren, John D. & Edgar, Thomas F., 2016. "Thermal energy storage to minimize cost and improve efficiency of a polygeneration district energy system in a real-time electricity market," Energy, Elsevier, vol. 113(C), pages 52-63.
    14. Danica Djurić Ilić, 2020. "Classification of Measures for Dealing with District Heating Load Variations—A Systematic Review," Energies, MDPI, vol. 14(1), pages 1-27, December.
    15. Khader, Mahmoud A. & Ghavami, Mohsen & Al-Zaili, Jafar & Sayma, Abdulnaser I., 2024. "Residential Micro-CHP system with integrated phase change material thermal energy storage," Energy, Elsevier, vol. 300(C).
    16. Zhang, Yin & Wang, Xin & Zhang, Yinping & Zhuo, Siwen, 2016. "A simplified model to study the location impact of latent thermal energy storage in building cooling heating and power system," Energy, Elsevier, vol. 114(C), pages 885-894.
    17. Mongibello, Luigi & Bianco, Nicola & Caliano, Martina & Graditi, Giorgio, 2016. "Comparison between two different operation strategies for a heat-driven residential natural gas-fired CHP system: Heat dumping vs. load partialization," Applied Energy, Elsevier, vol. 184(C), pages 55-67.
    18. Michael-Allan Millar & Neil M. Burnside & Zhibin Yu, 2019. "District Heating Challenges for the UK," Energies, MDPI, vol. 12(2), pages 1-21, January.
    19. Vincenzo Liso & Yingru Zhao & Wenyuan Yang & Mads Pagh Nielsen, 2015. "Modelling of a Solid Oxide Fuel Cell CHP System Coupled with a Hot Water Storage Tank for a Single Household," Energies, MDPI, vol. 8(3), pages 1-19, March.
    20. Hansen, Kenneth & Connolly, David & Lund, Henrik & Drysdale, David & Thellufsen, Jakob Zinck, 2016. "Heat Roadmap Europe: Identifying the balance between saving heat and supplying heat," Energy, Elsevier, vol. 115(P3), pages 1663-1671.

    More about this item

    Keywords

    ;
    ;
    ;
    ;
    ;

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jsusta:v:16:y:2024:i:24:p:10926-:d:1542881. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.