IDEAS home Printed from https://ideas.repec.org/a/gam/jsusta/v16y2024i21p9320-d1507458.html
   My bibliography  Save this article

Do’s and Don’ts in Climate Impact Assessment of University Campuses: Towards Responsible, Transparent and Comprehensive Reporting

Author

Listed:
  • Eckard Helmers

    (Department of Environmental Planning and Technology, Umwelt-Campus, University of Applied Sciences Trier, P.O. Box 1380, 55761 Birkenfeld, Germany)

Abstract

With the commitment of more and more universities to decrease greenhouse gas emissions, standardizing the modeling is now becoming urgent. To date, published climate-relevant emissions can be based on completely different and incomparable accounting methods, as shown with results between 6 and 2696 t CO 2 e for the use phase of the same campus. This article aims to identify, compare, and evaluate the different modeling approaches behind this. For this purpose, this article proposes basic attributes of emissions modeling and reporting. Of the three established approaches to emissions accounting, sector logic (territorial carbon accounting) produces the lowest figures. Reporting in accordance with the greenhouse gas protocol, which has become established worldwide, can also shift the responsibility outside the institutional consumer. Life-cycle assessment, instead, essentially includes provision costs triggered by the consumer. The different modeling approaches also overlap with different coverage of emission sources, for which a standard set is being proposed. Such emissions modeling should finally lead to the determination of university-specific climate performances, i.e., the CO 2 e emissions per capita and per m 2 of gross floor area. Infrastructure and procurement expenses must be recorded in addition and converted to an annual average.

Suggested Citation

  • Eckard Helmers, 2024. "Do’s and Don’ts in Climate Impact Assessment of University Campuses: Towards Responsible, Transparent and Comprehensive Reporting," Sustainability, MDPI, vol. 16(21), pages 1-24, October.
  • Handle: RePEc:gam:jsusta:v:16:y:2024:i:21:p:9320-:d:1507458
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2071-1050/16/21/9320/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2071-1050/16/21/9320/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Denner Deda & Helena Gervásio & Margarida J. Quina, 2023. "Bibliometric Analysis and Benchmarking of Life Cycle Assessment of Higher Education Institutions," Sustainability, MDPI, vol. 15(5), pages 1-18, February.
    2. Nkweauseh Reginald Longfor & Jiarong Hu & You Li & Xuepeng Qian & Weisheng Zhou, 2023. "Scientometric Trends and Knowledge Gaps of Zero-Emission Campuses," Sustainability, MDPI, vol. 15(23), pages 1-24, November.
    3. F. Degen & M. Winter & D. Bendig & J. Tübke, 2023. "Energy consumption of current and future production of lithium-ion and post lithium-ion battery cells," Nature Energy, Nature, vol. 8(11), pages 1284-1295, November.
    4. Sam Fankhauser & Stephen M. Smith & Myles Allen & Kaya Axelsson & Thomas Hale & Cameron Hepburn & J. Michael Kendall & Radhika Khosla & Javier Lezaun & Eli Mitchell-Larson & Michael Obersteiner & Lava, 2022. "The meaning of net zero and how to get it right," Nature Climate Change, Nature, vol. 12(1), pages 15-21, January.
    5. Fatin Samara & Sahar Ibrahim & Mohammed Ekrima Yousuf & Rose Armour, 2022. "Carbon Footprint at a United Arab Emirates University: GHG Protocol," Sustainability, MDPI, vol. 14(5), pages 1-22, February.
    6. Martin Weiss & Trey Winbush & Alexandra Newman & Eckard Helmers, 2024. "Energy Consumption of Electric Vehicles in Europe," Sustainability, MDPI, vol. 16(17), pages 1-26, August.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Badenhoop, Nikolai & Riedel, Max, 2024. "Reforming EU car labels: How to achieve consumer-friendly transparency?," SAFE Working Paper Series 433, Leibniz Institute for Financial Research SAFE.
    2. Hasret Sahin & A. A. Solomon & Arman Aghahosseini & Christian Breyer, 2024. "Systemwide energy return on investment in a sustainable transition towards net zero power systems," Nature Communications, Nature, vol. 15(1), pages 1-15, December.
    3. Hemmings, Peter & Mulheron, Michael & Murphy, Richard J. & Prescott, Matt, 2023. "Investigating the robustness of UK airport net zero plans," Journal of Air Transport Management, Elsevier, vol. 113(C).
    4. Qiang Wang & Yuanfan Li & Rongrong Li, 2024. "Rethinking the environmental Kuznets curve hypothesis across 214 countries: the impacts of 12 economic, institutional, technological, resource, and social factors," Palgrave Communications, Palgrave Macmillan, vol. 11(1), pages 1-19, December.
    5. Campiglio, Emanuele & Lamperti, Francesco & Terranova, Roberta, 2024. "Believe me when I say green! Heterogeneous expectations and climate policy uncertainty," Journal of Economic Dynamics and Control, Elsevier, vol. 165(C).
    6. Ren, Junjie & Zeng, Siyu & Chen, Daoyi & Yang, Mingjun & Linga, Praveen & Yin, Zhenyuan, 2023. "Roles of montmorillonite clay on the kinetics and morphology of CO2 hydrate in hydrate-based CO2 sequestration1," Applied Energy, Elsevier, vol. 340(C).
    7. Dora Almeida & Luísa Carvalho & Paulo Ferreira & Andreia Dionísio & Inzamam Ul Haq, 2024. "Global Dynamics of Environmental Kuznets Curve: A Cross-Correlation Analysis of Income and CO 2 Emissions," Sustainability, MDPI, vol. 16(20), pages 1-35, October.
    8. Aditi S. Saha & Rakesh D. Raut & Vinay Surendra Yadav & Abhijit Majumdar, 2022. "Blockchain Changing the Outlook of the Sustainable Food Supply Chain to Achieve Net Zero?," Sustainability, MDPI, vol. 14(24), pages 1-21, December.
    9. Leonel Prieto & Md Farid Talukder, 2023. "Resilient Agility: A Necessary Condition for Employee and Organizational Sustainability," Sustainability, MDPI, vol. 15(2), pages 1-24, January.
    10. Shasha Chai & Fanjie Kong & Yu Liu & Mengyin Liang & Quanfeng Liu, 2024. "Photovoltaic Solar Farms Site Selection through “Policy Constraints–Construction Suitability”: A Case Study of Qilian County, Qinghai," Land, MDPI, vol. 13(9), pages 1-20, September.
    11. Torriti, Jacopo, 2024. "Governance perspectives on achieving demand side flexibility for net zero," Energy Policy, Elsevier, vol. 191(C).
    12. Jinguo Rao & Xiaosong Zhang & Duanqiang Zhai, 2024. "Does the Upgrading of Development Zones Improve Land Use Efficiency under the Net-Zero Carbon City Goal? Prefectural-Level Evidence from Quasi-Natural Experiments in China," Land, MDPI, vol. 13(8), pages 1-22, August.
    13. Zhang, Hongji & Ding, Tao & Sun, Yuge & Huang, Yuhan & He, Yuankang & Huang, Can & Li, Fangxing & Xue, Chen & Sun, Xiaoqiang, 2023. "How does load-side re-electrification help carbon neutrality in energy systems: Cost competitiveness analysis and life-cycle deduction," Renewable and Sustainable Energy Reviews, Elsevier, vol. 187(C).
    14. Riccardo Boiocchi & Marco Ragazzi & Vincenzo Torretta & Elena Cristina Rada, 2023. "Critical Analysis of the GreenMetric World University Ranking System: The Issue of Comparability," Sustainability, MDPI, vol. 15(2), pages 1-15, January.
    15. Ulph, Alistair & Panzone, Luca & Hilton, Denis, 2023. "Do rational people sometimes act irrationally? A dynamic self-regulation model of sustainable consumer behavior," Economic Modelling, Elsevier, vol. 126(C).
    16. Chen, Quanwei & Lai, Xin & Chen, Junjie & Huang, Yunfeng & Guo, Yi & Wang, Yanan & Han, Xuebing & Lu, Languang & Sun, Yuedong & Ouyang, Minggao & Zheng, Yuejiu, 2024. "A critical comparison of LCA calculation models for the power lithium-ion battery in electric vehicles during use-phase," Energy, Elsevier, vol. 296(C).
    17. Tang, Junrong & Li, Qibin & Werle, Sebastian & Wang, Shukun & Yu, Haoshui, 2024. "Development and comprehensive thermo-economic analysis of a novel compressed CO2 energy storage system integrated with high-temperature thermal energy storage," Energy, Elsevier, vol. 303(C).
    18. Tolu Olarewaju & Samir Dani & Abdul Jabbar, 2023. "A Comprehensive Model for Developing SME Net Zero Capability Incorporating Grey Literature," Sustainability, MDPI, vol. 15(5), pages 1-18, March.
    19. Yanyi Zhu & Youpei Hu, 2023. "The Correlation between Urban Form and Carbon Emissions: A Bibliometric and Literature Review," Sustainability, MDPI, vol. 15(18), pages 1-28, September.
    20. Felix Ekardt & Paula Roos & Marie Bärenwaldt & Lea Nesselhauf, 2023. "Energy Charter Treaty: Towards a New Interpretation in the Light of Paris Agreement and Human Rights," Sustainability, MDPI, vol. 15(6), pages 1-18, March.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jsusta:v:16:y:2024:i:21:p:9320-:d:1507458. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.