IDEAS home Printed from https://ideas.repec.org/a/gam/jsusta/v16y2024i13p5458-d1423371.html
   My bibliography  Save this article

Improvement and Stability of Soil Organic Carbon: The Effect of Earthworm Mucus Organo-Mineral Associations with Montmorillonite and Hematite

Author

Listed:
  • Yuxuan Li

    (Yunnan Provincial Key Laboratory of Soil Carbon Sequestration and Pollution Control, Faculty of Environmental Science & Engineering, Kunming University of Science & Technology, Kunming 650500, China)

  • Siyue Feng

    (Yunnan Provincial Key Laboratory of Soil Carbon Sequestration and Pollution Control, Faculty of Environmental Science & Engineering, Kunming University of Science & Technology, Kunming 650500, China)

  • Lin Wang

    (Yunnan Provincial Key Laboratory of Soil Carbon Sequestration and Pollution Control, Faculty of Environmental Science & Engineering, Kunming University of Science & Technology, Kunming 650500, China)

  • Chencen Lei

    (Yunnan Provincial Key Laboratory of Soil Carbon Sequestration and Pollution Control, Faculty of Environmental Science & Engineering, Kunming University of Science & Technology, Kunming 650500, China)

  • Hongbo Peng

    (Faculty of Modern Agricultural Engineering, Kunming University of Science & Technology, Kunming 650500, China)

  • Xinhua He

    (School of Biological Sciences, University of Western Australia, Perth, WA 6009, Australia)

  • Dandan Zhou

    (Yunnan Provincial Key Laboratory of Soil Carbon Sequestration and Pollution Control, Faculty of Environmental Science & Engineering, Kunming University of Science & Technology, Kunming 650500, China)

  • Fangfang Li

    (Yunnan Provincial Key Laboratory of Soil Carbon Sequestration and Pollution Control, Faculty of Environmental Science & Engineering, Kunming University of Science & Technology, Kunming 650500, China)

Abstract

Improving soil carbon storage and stability plays an important role in the development of sustainable agricultural production and mitigating climate change. Earthworms are widely distributed in soil environments; earthworm mucus (EM) can interact with natural mineral materials to form EM–mineral association, enriching soil carbon storage. However, it is unclear how minerals affect the formation and oxidation degradation of EM–mineral associations. Herein, the interactions between EM and natural mineral materials (hematite ore (HO) and montmorillonite (MT)) were investigated. The carbon stability of EM–mineral associations was analyzed based on their chemical oxidative resistance. EM interacted with HO/MT through ligand exchange, hydrogen bonding interaction, and electrostatic attraction. Compared to EM that was extracted under pH 5.0 (EM5) or 9.0 (EM9), EM obtained at pH7 (EM7) contained more protein and polysaccharide components, and was greatly adsorbed by HO/MT. Moreover, EM showed a stronger sorption affinity to MT than HO. The stronger oxidation resistance of EM–MT than EM–HO was revealed by its higher carbon retention, suggesting the vital role of MT in protecting biogenically excreted organic carbon from degradation. Earthworms in neutral environments could substantially promote the establishment of organo-mineral associations. This study provides guidance for promoting soil carbon sequestration through agricultural management and is beneficial to the sustainability of the soil.

Suggested Citation

  • Yuxuan Li & Siyue Feng & Lin Wang & Chencen Lei & Hongbo Peng & Xinhua He & Dandan Zhou & Fangfang Li, 2024. "Improvement and Stability of Soil Organic Carbon: The Effect of Earthworm Mucus Organo-Mineral Associations with Montmorillonite and Hematite," Sustainability, MDPI, vol. 16(13), pages 1-13, June.
  • Handle: RePEc:gam:jsusta:v:16:y:2024:i:13:p:5458-:d:1423371
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2071-1050/16/13/5458/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2071-1050/16/13/5458/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Michael W. I. Schmidt & Margaret S. Torn & Samuel Abiven & Thorsten Dittmar & Georg Guggenberger & Ivan A. Janssens & Markus Kleber & Ingrid Kögel-Knabner & Johannes Lehmann & David A. C. Manning & Pa, 2011. "Persistence of soil organic matter as an ecosystem property," Nature, Nature, vol. 478(7367), pages 49-56, October.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Akinpelu, O.A. & Olaleye, O. & Fagbola, O., . "The Soil Organic Matter Decomposers: A Bibliometric Analysis," International Journal of Agriculture and Environmental Research, Malwa International Journals Publication, vol. 9(4).
    2. Hang Guo & Linxian Liao & Junzeng Xu & Wenyi Wang & Peng Chen & Zhihui Min & Yajun Luan & Yu Han & Keke Bao, 2025. "Dual Role of Iron Oxides in Stabilizing Particulate and Mineral-Associated Organic Carbon Under Field Management in Paddies," Agriculture, MDPI, vol. 15(13), pages 1-18, June.
    3. Shizhao Zhang & Shuzhi Wang & Jiayong Zhang & Bao Wang & Hui Wang & Liwei Liu & Chong Cao & Muyang Shi & Yuhan Liu, 2025. "Research on the Application of Biochar in Carbon Sequestration: A Bibliometric Analysis," Energies, MDPI, vol. 18(11), pages 1-31, May.
    4. Guoai Li & Xuxu Chai & Zheng Shi & Honghua Ruan, 2023. "Interactive Effects Determine Radiocarbon Abundance in Soil Fractions of Global Biomes," Land, MDPI, vol. 12(5), pages 1-17, May.
    5. repec:diw:diwwpp:dp1476 is not listed on IDEAS
    6. Gonzalo Almendros & José A. González-Pérez, 2025. "Soil Organic Carbon Sequestration Mechanisms and the Chemical Nature of Soil Organic Matter—A Review," Sustainability, MDPI, vol. 17(15), pages 1-22, July.
    7. Miquelajauregui, Yosune & Cumming, Steven G. & Gauthier, Sylvie, 2019. "Short-term responses of boreal carbon stocks to climate change: A simulation study of black spruce forests," Ecological Modelling, Elsevier, vol. 409(C), pages 1-1.
    8. Rafaella Campos & Gabrielle Ferreira Pires & Marcos Heil Costa, 2020. "Soil Carbon Sequestration in Rainfed and Irrigated Production Systems in a New Brazilian Agricultural Frontier," Agriculture, MDPI, vol. 10(5), pages 1-14, May.
    9. Huanjun Qi & Jinyin Lei & Jinqin He & Jian Wang & Xiaoting Lei & Jianxin Jin & Lina Zhou, 2025. "Response of Soil Organic Carbon Sequestration Rate, Nitrogen Use Efficiency, and Corn Yield to Different Exogenous Carbon Inputs in Rainfed Farmlands of the Ningnan Mountainous Area, Northwest China," Agriculture, MDPI, vol. 15(17), pages 1-17, August.
    10. Aaron Sobbe & Valentina Brombin & Enzo Rizzo & Gianluca Bianchini, 2025. "Saline Peatland Degradation in the Mezzano Lowland: 66 Years of Agricultural Impacts on Carbon and Soil Biogeochemistry," Land, MDPI, vol. 14(8), pages 1-21, August.
    11. Jiuming Zhang & Jiahui Yuan & Yingxue Zhu & Enjun Kuang & Jiaye Han & Yanxiang Shi & Fengqin Chi & Dan Wei & Jie Liu, 2024. "Transformation and Sequestration of Total Organic Carbon in Black Soil under Different Fertilization Regimes with Straw Carbon Inputs," Agriculture, MDPI, vol. 14(6), pages 1-11, June.
    12. Yajin Hu & Penghui Ma & Zhihao Yang & Siyuan Liu & Yingchao Li & Ling Li & Tongchao Wang & Kadambot H. M. Siddique, 2025. "The Responses of Crop Yield and Greenhouse Gas Emissions to Straw Returning from Staple Crops: A Meta-Analysis," Agriculture, MDPI, vol. 15(4), pages 1-19, February.
    13. Goncharov, Anton A. & Gorbatova, Anna S. & Sidorova, Alena A. & Tiunov, Alexei V. & Bocharov, Gennady A., 2022. "Mathematical modelling of the interaction of winter wheat (Triticum aestivum) and Fusarium species (Fusarium spp.)," Ecological Modelling, Elsevier, vol. 465(C).
    14. Duoxun Xu & Yongkang Ding & Yuchen Yan & Jianli Qian & Qianzhuo Zhao & Anquan Xia, 2025. "Soil Inorganic Carbon Content and Its Environmental Controls in the Weibei Loess Region: A Random Forest-Based Spatial Analysis," Land, MDPI, vol. 14(8), pages 1-20, August.
    15. Rizki Maftukhah & Katharina M. Keiblinger & Ngadisih Ngadisih & Murtiningrum Murtiningrum & Rosana M. Kral & Axel Mentler & Rebecca Hood-Nowotny, 2023. "Post-Tin-Mining Agricultural Soil Regeneration Using Local Organic Amendments Improve Nitrogen Fixation and Uptake in a Legume–Cassava Intercropping System," Land, MDPI, vol. 12(5), pages 1-17, May.
    16. Liu, Jieyun & Qiu, Husen & He, Shuai & Tian, Guangli, 2024. "Long-term mulched drip irrigation facilitates soil organic carbon stabilization and the dominance of microbial stochastic assembly processes," Agricultural Water Management, Elsevier, vol. 302(C).
    17. Shahmir Ali Kalhoro & Xuexuan Xu & Wenyuan Chen & Rui Hua & Sajjad Raza & Kang Ding, 2017. "Effects of Different Land-Use Systems on Soil Aggregates: A Case Study of the Loess Plateau (Northern China)," Sustainability, MDPI, vol. 9(8), pages 1-16, August.
    18. Chertov, Oleg & Shaw, Cindy & Shashkov, Maxim & Komarov, Alexander & Bykhovets, Sergey & Shanin, Vladimir & Grabarnik, Pavel & Frolov, Pavel & Kalinina, Olga & Priputina, Irina & Zubkova, Elena, 2017. "Romul_Hum model of soil organic matter formation coupled with soil biota activity. III. Parameterisation of earthworm activity," Ecological Modelling, Elsevier, vol. 345(C), pages 140-149.
    19. Xiangbiao Zhang & Xin Zhou & Yanyue Ma & Wenjin Zhang & Ruihua Zhang & Weiwei Zhai, 2025. "Contrasting Reaction of Dissolved Organic Matter with Birnessite Induced by Humic and Fulvic Acids in Flooded Paddy Soil," Sustainability, MDPI, vol. 17(16), pages 1-16, August.
    20. Bingrui Liu & Jiacheng Qian & Ran Zhao & Qijun Yang & Kening Wu & Huafu Zhao & Zhe Feng & Jianhui Dong, 2022. "Spatio-Temporal Variation and Its Driving Forces of Soil Organic Carbon along an Urban–Rural Gradient: A Case Study of Beijing," IJERPH, MDPI, vol. 19(22), pages 1-22, November.
    21. Barbara Kalisz & Andrzej Łachacz & Irena Giełwanowska & Maria Olech & Katarzyna Joanna Chwedorzewska & Wioleta Kellmann-Sopyła, 2025. "Labile and Stable Carbon Pools in Antarctic Soils of the Arctowski Region, King George Island," Sustainability, MDPI, vol. 17(16), pages 1-17, August.

    More about this item

    Keywords

    ;
    ;
    ;
    ;
    ;
    ;

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jsusta:v:16:y:2024:i:13:p:5458-:d:1423371. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.