IDEAS home Printed from https://ideas.repec.org/a/gam/jagris/v15y2025i4p408-d1591867.html
   My bibliography  Save this article

The Responses of Crop Yield and Greenhouse Gas Emissions to Straw Returning from Staple Crops: A Meta-Analysis

Author

Listed:
  • Yajin Hu

    (College of Resources and Environment, Henan Agricultural University, Zhengzhou 450046, China
    Postdoctoral Station of Crop Science, Henan Agricultural University, Zhengzhou 450046, China)

  • Penghui Ma

    (Yellow River Institute of Hydraulic Research, Yellow River Conservancy Commission, Zhengzhou 450003, China)

  • Zhihao Yang

    (College of Resources and Environment, Henan Agricultural University, Zhengzhou 450046, China)

  • Siyuan Liu

    (College of Resources and Environment, Henan Agricultural University, Zhengzhou 450046, China)

  • Yingchao Li

    (College of Resources and Environment, Henan Agricultural University, Zhengzhou 450046, China)

  • Ling Li

    (College of Resources and Environment, Henan Agricultural University, Zhengzhou 450046, China)

  • Tongchao Wang

    (College of Resources and Environment, Henan Agricultural University, Zhengzhou 450046, China
    College of Agronomy, Henan Agricultural University, Zhengzhou 450046, China)

  • Kadambot H. M. Siddique

    (The UWA Institute of Agriculture, The University of Western Australia, Perth, WA 6001, Australia)

Abstract

The practice of straw returning to agricultural fields (SRF) affects crop yields and greenhouse gas (GHG) emissions. However, the responses of crop yields and GHG emissions vary significantly due to diverse climatic conditions, soil conditions, and field management practices. In this study, we conducted a meta-analysis to assess the effects of SRF on the crop yield and GHG emissions from staple crops in China. Our results indicate that the average increment in the yield of three staple crops is 13.00% with SRF. Moreover, SRF decreased the N 2 O emissions compared to those without straw returning in regions with 800–1200 mm of MAP, SOC > 20 g kg –1 , 0.9–1.5 g kg –1 TN, pHs of 6.5–7.5, and a SRF duration < 3 years, in rice cultivation systems, and with partial SRF. However, irrespective of the climatic conditions, soil properties, or field management practices, SRF increased the CO 2 emissions compared to those without straw returning. Additionally, while SRF significantly increased the CH 4 emissions in paddy fields, it had no discernible effect on the CH 4 uptake in upland fields compared to that without straw returning. These findings offer valuable insights for optimizing straw management practices and reducing GHG emissions in farmland ecosystems.

Suggested Citation

  • Yajin Hu & Penghui Ma & Zhihao Yang & Siyuan Liu & Yingchao Li & Ling Li & Tongchao Wang & Kadambot H. M. Siddique, 2025. "The Responses of Crop Yield and Greenhouse Gas Emissions to Straw Returning from Staple Crops: A Meta-Analysis," Agriculture, MDPI, vol. 15(4), pages 1-19, February.
  • Handle: RePEc:gam:jagris:v:15:y:2025:i:4:p:408-:d:1591867
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2077-0472/15/4/408/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2077-0472/15/4/408/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Dong, Qin’ge & Yang, Yuchen & Yu, Kun & Feng, Hao, 2018. "Effects of straw mulching and plastic film mulching on improving soil organic carbon and nitrogen fractions, crop yield and water use efficiency in the Loess Plateau, China," Agricultural Water Management, Elsevier, vol. 201(C), pages 133-143.
    2. Michael W. I. Schmidt & Margaret S. Torn & Samuel Abiven & Thorsten Dittmar & Georg Guggenberger & Ivan A. Janssens & Markus Kleber & Ingrid Kögel-Knabner & Johannes Lehmann & David A. C. Manning & Pa, 2011. "Persistence of soil organic matter as an ecosystem property," Nature, Nature, vol. 478(7367), pages 49-56, October.
    3. Cheng Guo & Meng Li & Hong Chen, 2025. "Study on the Influencing Factors of Green Agricultural Subsidies on Straw Resource Utilization Technology Adopted by Farmers in Heilongjiang Province, China," Agriculture, MDPI, vol. 15(1), pages 1-18, January.
    4. Wang, Naijiang & Ding, Dianyuan & Malone, Robert W. & Chen, Haixin & Wei, Yongsheng & Zhang, Tibin & Luo, Xiaoqi & Li, Cheng & Chu, Xiaosheng & Feng, Hao, 2020. "When does plastic-film mulching yield more for dryland maize in the Loess Plateau of China? A meta-analysis," Agricultural Water Management, Elsevier, vol. 240(C).
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Yuxiang Zhang & Zhigang Wang & Yanni Sun & Yongjun Zeng & Shan Huang, 2025. "Long-Term Effect of Lime Application on Quantity and Quality of Soil Organic Carbon in Double Rice Cropping System," Agriculture, MDPI, vol. 15(6), pages 1-14, March.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Akinpelu, O.A. & Olaleye, O. & Fagbola, O., 2023. "The Soil Organic Matter Decomposers: A Bibliometric Analysis," International Journal of Agriculture and Environmental Research, Malwa International Journals Publication, vol. 9(4), August.
    2. Hang Guo & Linxian Liao & Junzeng Xu & Wenyi Wang & Peng Chen & Zhihui Min & Yajun Luan & Yu Han & Keke Bao, 2025. "Dual Role of Iron Oxides in Stabilizing Particulate and Mineral-Associated Organic Carbon Under Field Management in Paddies," Agriculture, MDPI, vol. 15(13), pages 1-18, June.
    3. Mingyue Li & Pujie Zhao & Yu Sun, 2025. "Impacts of Green Perception Benefits and Environmental Regulation Intensity on Farmers’ Agricultural Green Production Willingness: A New Perspective of Technology Acquisition," Agriculture, MDPI, vol. 15(13), pages 1-33, June.
    4. Shizhao Zhang & Shuzhi Wang & Jiayong Zhang & Bao Wang & Hui Wang & Liwei Liu & Chong Cao & Muyang Shi & Yuhan Liu, 2025. "Research on the Application of Biochar in Carbon Sequestration: A Bibliometric Analysis," Energies, MDPI, vol. 18(11), pages 1-31, May.
    5. Zhe Zhang & Na Li & Zhanxiang Sun & Guanghua Yin & Yanqing Zhang & Wei Bai & Liangshan Feng & John Yang, 2022. "Fall Straw Incorporation with Plastic Film Cover Increases Corn Yield and Water Use Efficiency under a Semi-Arid Climate," Agriculture, MDPI, vol. 12(12), pages 1-12, December.
    6. Guoai Li & Xuxu Chai & Zheng Shi & Honghua Ruan, 2023. "Interactive Effects Determine Radiocarbon Abundance in Soil Fractions of Global Biomes," Land, MDPI, vol. 12(5), pages 1-17, May.
    7. Isabel Teichmann, 2015. "An Economic Assessment of Soil Carbon Sequestration with Biochar in Germany," Discussion Papers of DIW Berlin 1476, DIW Berlin, German Institute for Economic Research.
    8. Miquelajauregui, Yosune & Cumming, Steven G. & Gauthier, Sylvie, 2019. "Short-term responses of boreal carbon stocks to climate change: A simulation study of black spruce forests," Ecological Modelling, Elsevier, vol. 409(C), pages 1-1.
    9. Rafaella Campos & Gabrielle Ferreira Pires & Marcos Heil Costa, 2020. "Soil Carbon Sequestration in Rainfed and Irrigated Production Systems in a New Brazilian Agricultural Frontier," Agriculture, MDPI, vol. 10(5), pages 1-14, May.
    10. Yuxuan Li & Siyue Feng & Lin Wang & Chencen Lei & Hongbo Peng & Xinhua He & Dandan Zhou & Fangfang Li, 2024. "Improvement and Stability of Soil Organic Carbon: The Effect of Earthworm Mucus Organo-Mineral Associations with Montmorillonite and Hematite," Sustainability, MDPI, vol. 16(13), pages 1-13, June.
    11. Dong Guo & Chuanyong Chen & Baoyuan Zhou & Di Ma & William D. Batchelor & Xiao Han & Zaisong Ding & Mei Du & Ming Zhao & Ming Li & Wei Ma, 2022. "Drip Fertigation with Relatively Low Water and N Input Achieved Higher Grain Yield of Maize by Improving Pre- and Post-Silking Dry Matter Accumulation," Sustainability, MDPI, vol. 14(13), pages 1-20, June.
    12. Hu, Yajin & Ma, Penghui & Duan, Chenxiao & Wu, Shufang & Feng, Hao & Zou, Yufeng, 2020. "Black plastic film combined with straw mulching delays senescence and increases summer maize yield in northwest China," Agricultural Water Management, Elsevier, vol. 231(C).
    13. Thidar, Myint & Gong, Daozhi & Mei, Xurong & Gao, Lili & Li, Haoru & Hao, Weiping & Gu, Fengxue, 2020. "Mulching improved soil water, root distribution and yield of maize in the Loess Plateau of Northwest China," Agricultural Water Management, Elsevier, vol. 241(C).
    14. Chuan Liu & Gang Liu & Hui Gao & Yun Xie, 2025. "Effect of No-Tillage on Soil Bacterial Community Structure in the Black Soil Region of Northeast China," Sustainability, MDPI, vol. 17(5), pages 1-17, February.
    15. Jiuming Zhang & Jiahui Yuan & Yingxue Zhu & Enjun Kuang & Jiaye Han & Yanxiang Shi & Fengqin Chi & Dan Wei & Jie Liu, 2024. "Transformation and Sequestration of Total Organic Carbon in Black Soil under Different Fertilization Regimes with Straw Carbon Inputs," Agriculture, MDPI, vol. 14(6), pages 1-11, June.
    16. Cheng, Minghui & Wang, Haidong & Fan, Junliang & Zhang, Shaohui & Liao, Zhenqi & Zhang, Fucang & Wang, Yanli, 2021. "A global meta-analysis of yield and water use efficiency of crops, vegetables and fruits under full, deficit and alternate partial root-zone irrigation," Agricultural Water Management, Elsevier, vol. 248(C).
    17. Gao, Haihe & Yan, Changrong & Liu, Qin & Li, Zhen & Yang, Xiao & Qi, Ruimin, 2019. "Exploring optimal soil mulching to enhance yield and water use efficiency in maize cropping in China: A meta-analysis," Agricultural Water Management, Elsevier, vol. 225(C).
    18. Goncharov, Anton A. & Gorbatova, Anna S. & Sidorova, Alena A. & Tiunov, Alexei V. & Bocharov, Gennady A., 2022. "Mathematical modelling of the interaction of winter wheat (Triticum aestivum) and Fusarium species (Fusarium spp.)," Ecological Modelling, Elsevier, vol. 465(C).
    19. Li, Cheng & Zhang, Yunxin & Wang, Jingui & Feng, Hao & Zhang, Renyou & Zhang, Wenxin & Siddique, Kadambot H.M., 2024. "Considering water-temperature synergistic factors improves simulations of stomatal conductance models under plastic film mulching," Agricultural Water Management, Elsevier, vol. 306(C).
    20. Rizki Maftukhah & Katharina M. Keiblinger & Ngadisih Ngadisih & Murtiningrum Murtiningrum & Rosana M. Kral & Axel Mentler & Rebecca Hood-Nowotny, 2023. "Post-Tin-Mining Agricultural Soil Regeneration Using Local Organic Amendments Improve Nitrogen Fixation and Uptake in a Legume–Cassava Intercropping System," Land, MDPI, vol. 12(5), pages 1-17, May.

    More about this item

    Keywords

    ;
    ;
    ;
    ;
    ;

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jagris:v:15:y:2025:i:4:p:408-:d:1591867. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.