IDEAS home Printed from https://ideas.repec.org/a/gam/jsusta/v17y2025i16p7203-d1720824.html
   My bibliography  Save this article

Contrasting Reaction of Dissolved Organic Matter with Birnessite Induced by Humic and Fulvic Acids in Flooded Paddy Soil

Author

Listed:
  • Xiangbiao Zhang

    (Zhejiang Key Laboratory of Low-Carbon Control Technology for Industrial Pollution, College of Environment, Zhejiang University of Technology, Hangzhou 310000, China)

  • Xin Zhou

    (Zhejiang Key Laboratory of Low-Carbon Control Technology for Industrial Pollution, College of Environment, Zhejiang University of Technology, Hangzhou 310000, China)

  • Yanyue Ma

    (Zhejiang Key Laboratory of Low-Carbon Control Technology for Industrial Pollution, College of Environment, Zhejiang University of Technology, Hangzhou 310000, China)

  • Wenjin Zhang

    (Zhejiang Key Laboratory of Low-Carbon Control Technology for Industrial Pollution, College of Environment, Zhejiang University of Technology, Hangzhou 310000, China)

  • Ruihua Zhang

    (Zhejiang Key Laboratory of Low-Carbon Control Technology for Industrial Pollution, College of Environment, Zhejiang University of Technology, Hangzhou 310000, China)

  • Weiwei Zhai

    (Zhejiang Key Laboratory of Low-Carbon Control Technology for Industrial Pollution, College of Environment, Zhejiang University of Technology, Hangzhou 310000, China)

Abstract

Manganese (Mn) oxides exhibit significant potential to either stabilize or destabilize soil organic carbon (SOC) through the polymerization and/or oxidation of organic molecules via organo-mineral interactions. Birnessite (MnO 2 ) is known to strongly interact with soil dissolved organic matter (DOM), which is DOM composition-dependent. Humic acid (HA) and fulvic acid (FA) are commonly used as organic fertilizers in soils. In this study, the contrasting reaction of DOM with birnessite in flooded paddy soil with HA and FA amendment was investigated at a molecular level. The results demonstrated that HA amendment enhanced the reaction of phenolic compounds in soil DOM with birnessite, leading to the formation of condensed aromatic compounds and polymeric products (PP) with higher molecular weights and aromaticity. This suggests that HA amendment enhances the birnessite-induced polymerization of soil DOM. In contrast, FA facilitated the birnessite-induced oxidation of soil DOM, yielding dicarboxylic acids (DA), monocarboxylic acids (MA), and quinones products (QP). These findings demonstrate that the reactivity of soil DOM with birnessite is significantly influenced by the composition of DOM exogenously added. This study provides comprehensive understandings of the interactions among Mn and C and helps to predict behaviors of DOM molecules in flooded paddy soil, which is critical for optimizing sustainable soil management.

Suggested Citation

  • Xiangbiao Zhang & Xin Zhou & Yanyue Ma & Wenjin Zhang & Ruihua Zhang & Weiwei Zhai, 2025. "Contrasting Reaction of Dissolved Organic Matter with Birnessite Induced by Humic and Fulvic Acids in Flooded Paddy Soil," Sustainability, MDPI, vol. 17(16), pages 1-16, August.
  • Handle: RePEc:gam:jsusta:v:17:y:2025:i:16:p:7203-:d:1720824
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2071-1050/17/16/7203/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2071-1050/17/16/7203/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Michael W. I. Schmidt & Margaret S. Torn & Samuel Abiven & Thorsten Dittmar & Georg Guggenberger & Ivan A. Janssens & Markus Kleber & Ingrid Kögel-Knabner & Johannes Lehmann & David A. C. Manning & Pa, 2011. "Persistence of soil organic matter as an ecosystem property," Nature, Nature, vol. 478(7367), pages 49-56, October.
    2. Johannes Lehmann & Markus Kleber, 2015. "The contentious nature of soil organic matter," Nature, Nature, vol. 528(7580), pages 60-68, December.
    3. Li, Ge & Shan, Yuyang & Nie, Weibo & Sun, Yan & Su, Lijun & Mu, Weiyi & Qu, Zhi & Yang, Ting, 2025. "Humic acid improves water retention, maize growth, water use efficiency and economic benefits in coastal saline-alkali soils," Agricultural Water Management, Elsevier, vol. 309(C).
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Hang Guo & Linxian Liao & Junzeng Xu & Wenyi Wang & Peng Chen & Zhihui Min & Yajun Luan & Yu Han & Keke Bao, 2025. "Dual Role of Iron Oxides in Stabilizing Particulate and Mineral-Associated Organic Carbon Under Field Management in Paddies," Agriculture, MDPI, vol. 15(13), pages 1-18, June.
    2. Gonzalo Almendros & José A. González-Pérez, 2025. "Soil Organic Carbon Sequestration Mechanisms and the Chemical Nature of Soil Organic Matter—A Review," Sustainability, MDPI, vol. 17(15), pages 1-22, July.
    3. Miriam Githongo & Lucy Ngatia & Milka Kiboi & Anne Muriuki & Andreas Fliessbach & Collins Musafiri & Riqiang Fu & Felix Ngetich, 2023. "The Structural Quality of Soil Organic Matter under Selected Soil Fertility Management Practices in the Central Highlands of Kenya," Sustainability, MDPI, vol. 15(8), pages 1-13, April.
    4. Qin Zhang & Chunfang Yue & Pujia Yu & Hailiang Xu & Kun Liu & Jie Wu & Fangyu Sheng, 2024. "Impacts of Different Vegetation Types on Soil Aggregate Stability in the Key Ecological Rehabilitation Area of the Tarim River Basin, Northwest China," Land, MDPI, vol. 13(12), pages 1-16, December.
    5. Liangang Ma & Baohua Xiao, 2023. "Characteristic of Molecular Weight-Fractions of Soil Organic Matter from Calcareous Soil and Yellow Soil," Sustainability, MDPI, vol. 15(2), pages 1-13, January.
    6. Barbara Kalisz & Andrzej Łachacz & Irena Giełwanowska & Maria Olech & Katarzyna Joanna Chwedorzewska & Wioleta Kellmann-Sopyła, 2025. "Labile and Stable Carbon Pools in Antarctic Soils of the Arctowski Region, King George Island," Sustainability, MDPI, vol. 17(16), pages 1-17, August.
    7. Ellie M. Andrews & Sire Kassama & Evie E. Smith & Patrick H. Brown & Sat Darshan S. Khalsa, 2021. "A Review of Potassium-Rich Crop Residues Used as Organic Matter Amendments in Tree Crop Agroecosystems," Agriculture, MDPI, vol. 11(7), pages 1-22, June.
    8. Saskia Keesstra & Gerben Mol & Jan De Leeuw & Joop Okx & Co Molenaar & Margot De Cleen & Saskia Visser, 2018. "Soil-Related Sustainable Development Goals: Four Concepts to Make Land Degradation Neutrality and Restoration Work," Land, MDPI, vol. 7(4), pages 1-20, November.
    9. Salih Demirkaya & Abdurrahman Ay & Coşkun Gülser & Rıdvan Kızılkaya, 2025. "Enhancing Clay Soil Productivity with Fresh and Aged Biochar: A Two-Year Field Study on Soil Quality and Wheat Yield," Sustainability, MDPI, vol. 17(2), pages 1-18, January.
    10. Akinpelu, O.A. & Olaleye, O. & Fagbola, O., . "The Soil Organic Matter Decomposers: A Bibliometric Analysis," International Journal of Agriculture and Environmental Research, Malwa International Journals Publication, vol. 9(4).
    11. Elena A. Mikhailova & Garth R. Groshans & Christopher J. Post & Mark A. Schlautman & Gregory C. Post, 2019. "Valuation of Soil Organic Carbon Stocks in the Contiguous United States Based on the Avoided Social Cost of Carbon Emissions," Resources, MDPI, vol. 8(3), pages 1-15, August.
    12. Rolinski, Susanne & Prishchepov, Alexander V. & Guggenberger, Georg & Bischoff, Norbert & Kurganova, Irina & Schierhorn, Florian & Müller, Daniel & Müller, Christoph, 2021. "Dynamics of soil organic carbon in the steppes of Russia and Kazakhstan under past and future climate and land use," EconStor Open Access Articles and Book Chapters, ZBW - Leibniz Information Centre for Economics, vol. 21(3).
    13. Meiting Li & Keqin Wang & Xiaoyi Ma & Mingsi Fan & Biyu Li & Yali Song, 2025. "Relationship Between Soil Aggregate Stability and Associated Carbon and Nitrogen Changes Under Different Ecological Construction Measures in the Karst Region of Southwest China," Agriculture, MDPI, vol. 15(2), pages 1-23, January.
    14. Berazneva, Julia & McBride, Linden & Sheahan, Megan & Güereña, David, 2018. "Empirical assessment of subjective and objective soil fertility metrics in east Africa: Implications for researchers and policy makers," World Development, Elsevier, vol. 105(C), pages 367-382.
    15. O. E. Onu & Ekefan, E.J. & A. O. Adaikwu, 2025. "Effects of Solid Waste Disposal on Soil Quality in Makurdi Metropolis, Benue State, Nigeria," International Journal of Research and Scientific Innovation, International Journal of Research and Scientific Innovation (IJRSI), vol. 12(8), pages 1416-1431, August.
    16. Shamal Shasang Kumar & Owais Ali Wani & Binesh Prasad & Amena Banuve & Penaia Mua & Ami Chand Sharma & Shalendra Prasad & Abdul Raouf Malik & Salah El-Hendawy & Mohamed A. Mattar, 2024. "Effects of Mulching on Soil Properties and Yam Production in Tropical Region," Sustainability, MDPI, vol. 16(17), pages 1-25, September.
    17. Héctor Iván Bedolla-Rivera & María de la Luz Xochilt Negrete-Rodríguez & Miriam del Rocío Medina-Herrera & Francisco Paúl Gámez-Vázquez & Dioselina Álvarez-Bernal & Midory Samaniego-Hernández & Alfred, 2020. "Development of a Soil Quality Index for Soils under Different Agricultural Management Conditions in the Central Lowlands of Mexico: Physicochemical, Biological and Ecophysiological Indicators," Sustainability, MDPI, vol. 12(22), pages 1-24, November.
    18. Ninghui Xie & Liangjie Sun & Tong Lu & Xi Zhang & Ning Duan & Wei Wang & Xiaolong Liang & Yuchuan Fan & Huiyu Liu, 2025. "Effects of Adding Different Corn Residue Components on Soil and Aggregate Organic Carbon," Agriculture, MDPI, vol. 15(10), pages 1-14, May.
    19. Shizhao Zhang & Shuzhi Wang & Jiayong Zhang & Bao Wang & Hui Wang & Liwei Liu & Chong Cao & Muyang Shi & Yuhan Liu, 2025. "Research on the Application of Biochar in Carbon Sequestration: A Bibliometric Analysis," Energies, MDPI, vol. 18(11), pages 1-31, May.
    20. Jakub Bekier & Elżbieta Jamroz & Karolina Walenczak-Bekier & Martyna Uściła, 2023. "Soil Organic Matter Composition in Urban Soils: A Study of Wrocław Agglomeration, SW Poland," Sustainability, MDPI, vol. 15(3), pages 1-12, January.

    More about this item

    Keywords

    ;
    ;
    ;
    ;
    ;

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jsusta:v:17:y:2025:i:16:p:7203-:d:1720824. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.