IDEAS home Printed from https://ideas.repec.org/a/gam/jsusta/v16y2024i11p4675-d1405901.html
   My bibliography  Save this article

Waste Plastic in Asphalt Mixtures via the Dry Method: A Bibliometric Analysis

Author

Listed:
  • Isabella M. Bueno

    (Department of Civil and Environmental Engineering, University of Nebraska-Lincoln (UNL), Lincoln, NE 68588, USA)

  • Jamilla E. S. L. Teixeira

    (Department of Civil and Environmental Engineering, University of Nebraska-Lincoln (UNL), Lincoln, NE 68588, USA)

Abstract

Although waste plastic (WP) application as a paving material has drawn increasing attention from scholars, there is a lack of studies that summarize the latest development of WP research. Considering there is no standard procedure to incorporate WPs in asphalt mixtures, it is important to document the major findings from the available literature to identify knowledge gaps to tackle in future research and advance knowledge on this subject. Using a bibliometric analysis method, this study carries out a holistic review of WP articles published from 2003 to 2023, focusing on incorporating WP in asphalt mixtures via the dry method. This study particularly focused on identifying and evaluating individual types of WP mostly used in asphalt mixtures via the dry method and how their most common characteristics (size, shape, and melting point) affect the mixing procedure and the overall mixture’s performance. The analysis highlighted China, the USA, and India as leading countries in WP-related publications. Typically, low-density polyethylene (LDPE), high-density polyethylene (HDPE), and polyethylene terephthalate (PET) were the most utilized WPs in the dry method. Smaller WP particle sizes (<2.36 mm) were considered more suitable in asphalt mixtures. In general, studies employing procedures involving WP melting, typically by introducing WP to pre-heated aggregates at temperatures surpassing its melting point, resulted in improved asphalt mixtures with enhanced resistance to rutting, cracking, and moisture damage. In this context, positive performance outcomes were notably observed in studies using HDPE or LDPE, potentially because of their low melting point. The key knowledge gaps identified were the lack of a consistent procedure applicable across studies, a feasibility assessment for scaling laboratory-based procedures to field applications, and laboratory evaluations utilizing advanced performance tests as suggested in the Balance Mix Design (BMD) approaches.

Suggested Citation

  • Isabella M. Bueno & Jamilla E. S. L. Teixeira, 2024. "Waste Plastic in Asphalt Mixtures via the Dry Method: A Bibliometric Analysis," Sustainability, MDPI, vol. 16(11), pages 1-28, May.
  • Handle: RePEc:gam:jsusta:v:16:y:2024:i:11:p:4675-:d:1405901
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2071-1050/16/11/4675/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2071-1050/16/11/4675/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Laurent Lebreton & Anthony Andrady, 2019. "Future scenarios of global plastic waste generation and disposal," Humanities and Social Sciences Communications, Palgrave Macmillan, vol. 5(1), pages 1-11, December.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. World Bank, 2024. "Unlocking Financing to Combat the Plastics Crisis - Opportunities, Risks, and Recommendations for Plastic Credits," World Bank Publications - Reports 41866, The World Bank Group.
    2. Huijie Yan & Mateo Cordier & Takuro Uehara, 2024. "Future Projections of Global Plastic Pollution: Scenario Analyses and Policy Implications," Sustainability, MDPI, vol. 16(2), pages 1-18, January.
    3. Evangelos Danopoulos & Maureen Twiddy & Jeanette M Rotchell, 2020. "Microplastic contamination of drinking water: A systematic review," PLOS ONE, Public Library of Science, vol. 15(7), pages 1-23, July.
    4. Nakayama, Tadanobu & Osako, Masahiro, 2023. "Development of a process-based eco-hydrology model for evaluating the spatio-temporal dynamics of macro- and micro-plastics for the whole of Japan," Ecological Modelling, Elsevier, vol. 476(C).
    5. Khumbelo Mabadahanye & Mwazvita T. B. Dalu & Linton F. Munyai & Farai Dondofema & Tatenda Dalu, 2025. "Perceptions and Knowledge of Water and Wastewater Treatment Plant Workers Regarding Plastic Pollution and Removal," Sustainability, MDPI, vol. 17(1), pages 1-13, January.
    6. Rumana Hossain & Md Tasbirul Islam & Riya Shanker & Debishree Khan & Katherine Elizabeth Sarah Locock & Anirban Ghose & Heinz Schandl & Rita Dhodapkar & Veena Sahajwalla, 2022. "Plastic Waste Management in India: Challenges, Opportunities, and Roadmap for Circular Economy," Sustainability, MDPI, vol. 14(8), pages 1-34, April.
    7. Xuemeng Zhang & Chao Liu & Yuexi Chen & Guanghong Zheng & Yinguang Chen, 2022. "Source separation, transportation, pretreatment, and valorization of municipal solid waste: a critical review," Environment, Development and Sustainability: A Multidisciplinary Approach to the Theory and Practice of Sustainable Development, Springer, vol. 24(10), pages 11471-11513, October.
    8. Trieu Nguyen, Uyen Nhat & Van Lam, Do & Shim, Hyung Cheoul & Lee, Seung-Mo, 2021. "Leaf-derived porous carbon synthesized by carbothermic reduction," Renewable Energy, Elsevier, vol. 171(C), pages 116-123.
    9. Chen Liu & Qiannan Zhuo & Yujiro Ishimura & Yasuhiko Hotta & Chika Aoki-Suzuki & Atsushi Watabe, 2025. "Regional Insights on the Usage of Single-Use Plastics and Their Disposal in Five Asian Cities," Sustainability, MDPI, vol. 17(10), pages 1-29, May.
    10. Tobias Börger & Nick Hanley & Robert J. Johnston & Keila Meginnis & Tom Ndebele & Ghamz E. Ali Siyal & Frans de Vries, 2024. "Equity preferences and abatement cost sharing in international environmental agreements," American Journal of Agricultural Economics, John Wiley & Sons, vol. 106(1), pages 416-441, January.
    11. Alistair McIlgorm & Jian Xie, 2023. "The Costs of Environmental Degradation from Plastic Pollution in Selected Coastal Areas in the United Republic of Tanzania," World Bank Publications - Reports 39547, The World Bank Group.
    12. World Bank, 2023. "Tackling Plastics Pollution," World Bank Publications - Reports 40458, The World Bank Group.
    13. Andrea Ballatore & Teun Johannes Verhagen & Zhije Li & Stefano Cucurachi, 2022. "This city is not a bin: Crowdmapping the distribution of urban litter," Journal of Industrial Ecology, Yale University, vol. 26(1), pages 197-212, February.
    14. Mehrab Nodehi & Vahid Mohammad Taghvaee, 2022. "Applying Circular Economy to Construction Industry through Use of Waste Materials: A Review of Supplementary Cementitious Materials, Plastics, and Ceramics," Circular Economy and Sustainability, Springer, vol. 2(3), pages 987-1020, September.
    15. Aditya Chidepatil & Prabhleen Bindra & Devyani Kulkarni & Mustafa Qazi & Meghana Kshirsagar & Krishnaswamy Sankaran, 2020. "From Trash to Cash: How Blockchain and Multi-Sensor-Driven Artificial Intelligence Can Transform Circular Economy of Plastic Waste?," Administrative Sciences, MDPI, vol. 10(2), pages 1-16, April.
    16. Adina-Iuliana Jigani & Camelia Delcea & Corina Ioanăș, 2020. "Consumers’ Behavior in Selective Waste Collection: A Case Study Regarding the Determinants from Romania," Sustainability, MDPI, vol. 12(16), pages 1-35, August.
    17. Choi, Dongho & Jung, Sungyup & Lee, Sang Soo & Lin, Kun-Yi Andrew & Park, Young-Kwon & Kim, Hana & Tsang, Yiu Fai & Kwon, Eilhann E., 2021. "Leveraging carbon dioxide to control the H2/CO ratio in catalytic pyrolysis of fishing net waste," Renewable and Sustainable Energy Reviews, Elsevier, vol. 138(C).
    18. Swati Dhingra & Stephen Machin, 2025. "Citizen training and the urban waste footprint," CEP Discussion Papers dp2124, Centre for Economic Performance, LSE.
    19. Yanxu Zhang & Peipei Wu & Ruochong Xu & Xuantong Wang & Lili Lei & Amina T. Schartup & Yiming Peng & Qiaotong Pang & Xinle Wang & Lei Mai & Ruwei Wang & Huan Liu & Xiaotong Wang & Arjen Luijendijk & E, 2023. "Plastic waste discharge to the global ocean constrained by seawater observations," Nature Communications, Nature, vol. 14(1), pages 1-12, December.
    20. Mutuku, Judith & Tocock, Mark & Yanotti, Maria & Tinch, Dugald & Hatton MacDonald, Darla, 2024. "Public perceptions of the value of reducing marine plastics in Australian waters," Ecological Economics, Elsevier, vol. 217(C).

    More about this item

    Keywords

    ;
    ;
    ;
    ;

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jsusta:v:16:y:2024:i:11:p:4675-:d:1405901. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.