IDEAS home Printed from https://ideas.repec.org/a/gam/jsusta/v16y2024i10p4307-d1398106.html
   My bibliography  Save this article

Understanding Tsunami Evacuation via a Social Force Model While Considering Stress Levels Using Agent-Based Modelling

Author

Listed:
  • Constanza Flores

    (Transdisciplinary Science and Engineering Program, Graduate School of Advanced Science and Engineering, Hiroshima University, 1-5-1 Kagamiyama, Higashi-Hiroshima 739-8529, Japan
    Department of Civil and Natural Resources Engineering, University of Canterbury, Christchurch 8140, New Zealand
    School of Engineering, RMIT University, Melbourne, VIC 3000, Australia
    Second affiliation is current main affiliation.)

  • Han Soo Lee

    (Transdisciplinary Science and Engineering Program, Graduate School of Advanced Science and Engineering, Hiroshima University, 1-5-1 Kagamiyama, Higashi-Hiroshima 739-8529, Japan
    Center for the Planetary Health and Innovation Science (PHIS), The IDEC Institute, Hiroshima University, 1-5-1 Kagamiyama, Higashi-Hiroshima 739-8529, Japan)

  • Erick Mas

    (International Research Institute of Disaster Science, Tohoku University, Sendai 980-8572, Japan)

Abstract

Given massive events, such as demonstrations in coastal cities exposed to tsunamigenic earthquakes, it is essential to explore pedestrian motion methods to help at-risk coastal communities and stakeholders understand the current issues they face to enhance disaster preparedness. This research targets SDG 11 Sustainable Cities and Communities. It strengthens resilience in coastal areas by implementing a social force model using a microscopic agent-based model to assess the impact of human behaviour on evacuation performance by introducing evacuation stress levels due to a tsunami triggered in central Chile. Two scenarios with two environments and three crowd sizes are implemented in NetLogo. In Scenario 1, pedestrians walk at a relaxed velocity. In Scenario 2, tsunami evacuation stress is incorporated, resulting in pedestrians walking at a running velocity, taking, on average, four times less time to evacuate. We explored more realistic settings by considering the internal susceptibility of each agent to spread tsunami evacuation stress among other evacuees. Results from Scenario 2 show that internal susceptibility effects almost double the mean evacuation time for 200 agents. Findings suggest a trade-off between realism and the minimization of evacuation time. This research is considered a first step toward including stress in tsunami evacuations for sustainable evacuation planning.

Suggested Citation

  • Constanza Flores & Han Soo Lee & Erick Mas, 2024. "Understanding Tsunami Evacuation via a Social Force Model While Considering Stress Levels Using Agent-Based Modelling," Sustainability, MDPI, vol. 16(10), pages 1-20, May.
  • Handle: RePEc:gam:jsusta:v:16:y:2024:i:10:p:4307-:d:1398106
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2071-1050/16/10/4307/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2071-1050/16/10/4307/
    Download Restriction: no
    ---><---

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jsusta:v:16:y:2024:i:10:p:4307-:d:1398106. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.