IDEAS home Printed from https://ideas.repec.org/a/eee/chsofr/v139y2020ics0960077920304963.html
   My bibliography  Save this article

Simulating the dynamical features of evacuation governed by periodic vibrations

Author

Listed:
  • Tian, Xiaoyong
  • Li, Kun
  • Kang, Zengxin
  • Peng, Yun
  • Cui, Hongjun

Abstract

Emergency evacuation often occurs in extremely adverse environments, such as on a shaking floor vibrated by seismic waves or water waves, whereas present work seldom takes this into consideration. Thus, based on an improved social force model (SFM), the influence of wave-induced fluctuations on evacuation dynamics is investigated. The driven wave is simplified as a periodic sinusoid characterized by a peak value and period length. Intriguingly, fluctuations can substantially weaken the famous “faster-is-slower” effect. That is, trying to move faster, namely, increasing the desired velocity, always facilitates evacuation. Moreover, there exist combinations of moderate peak values and large period lengths, resulting in the minimum evacuation efficiency. It is also worth noting that the increment of extreme panic induces the “collapse” of social norms, which eventually leads to heavy casualties. Our work thus can provide insight into pedestrian dynamics in shaking environments and help plan effective evacuation routes.

Suggested Citation

  • Tian, Xiaoyong & Li, Kun & Kang, Zengxin & Peng, Yun & Cui, Hongjun, 2020. "Simulating the dynamical features of evacuation governed by periodic vibrations," Chaos, Solitons & Fractals, Elsevier, vol. 139(C).
  • Handle: RePEc:eee:chsofr:v:139:y:2020:i:c:s0960077920304963
    DOI: 10.1016/j.chaos.2020.110099
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0960077920304963
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.chaos.2020.110099?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Zhang, Jianlei & Zhang, Chunyan & Chu, Tianguang, 2011. "The evolution of cooperation in spatial groups," Chaos, Solitons & Fractals, Elsevier, vol. 44(1), pages 131-136.
    2. Guo, R.Y. & Huang, H.J., 2008. "A mobile lattice gas model for simulating pedestrian evacuation," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 387(2), pages 580-586.
    3. Anders Johansson & Dirk Helbing & Pradyumn K. Shukla, 2007. "Specification Of The Social Force Pedestrian Model By Evolutionary Adjustment To Video Tracking Data," Advances in Complex Systems (ACS), World Scientific Publishing Co. Pte. Ltd., vol. 10(supp0), pages 271-288.
    4. Dirk Helbing & Illés Farkas & Tamás Vicsek, 2000. "Simulating dynamical features of escape panic," Nature, Nature, vol. 407(6803), pages 487-490, September.
    5. Zhang, Yanling & Chen, Xiaojie & Liu, Aizhi & Sun, Changyin, 2018. "The effect of the stake size on the evolution of fairness," Applied Mathematics and Computation, Elsevier, vol. 321(C), pages 641-653.
    6. Tanimoto, Jun & Hagishima, Aya & Tanaka, Yasukaka, 2010. "Study of bottleneck effect at an emergency evacuation exit using cellular automata model, mean field approximation analysis, and game theory," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 389(24), pages 5611-5618.
    7. Yanling Zhang & Feng Fu, 2018. "Strategy intervention for the evolution of fairness," PLOS ONE, Public Library of Science, vol. 13(5), pages 1-13, May.
    8. Li, Jiaqi & Zhang, Chunyan & Sun, Qinglin & Chen, Zengqiang, 2015. "Coevolution between strategy and social networks structure promotes cooperation," Chaos, Solitons & Fractals, Elsevier, vol. 77(C), pages 253-263.
    9. von Krüchten, Cornelia & Schadschneider, Andreas, 2017. "Empirical study on social groups in pedestrian evacuation dynamics," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 475(C), pages 129-141.
    10. Rui Cong & Bin Wu & Yuanying Qiu & Long Wang, 2012. "Evolution of Cooperation Driven by Reputation-Based Migration," PLOS ONE, Public Library of Science, vol. 7(5), pages 1-7, May.
    11. Hou, Lei & Liu, Jian-Guo & Pan, Xue & Wang, Bing-Hong, 2014. "A social force evacuation model with the leadership effect," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 400(C), pages 93-99.
    12. Li, Qiaoru & Gao, Yuechao & Chen, Liang & Kang, Zengxin, 2019. "Emergency evacuation with incomplete information in the presence of obstacles," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 533(C).
    13. Varas, A. & Cornejo, M.D. & Mainemer, D. & Toledo, B. & Rogan, J. & Muñoz, V. & Valdivia, J.A., 2007. "Cellular automaton model for evacuation process with obstacles," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 382(2), pages 631-642.
    14. Song, Weiguo & Xu, Xuan & Wang, Bing-Hong & Ni, Shunjiang, 2006. "Simulation of evacuation processes using a multi-grid model for pedestrian dynamics," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 363(2), pages 492-500.
    15. Kang, Zengxin & Zhang, Lei & Li, Kun, 2019. "An improved social force model for pedestrian dynamics in shipwrecks," Applied Mathematics and Computation, Elsevier, vol. 348(C), pages 355-362.
    16. Wang, Qiang & He, Nanrong & Chen, Xiaojie, 2018. "Replicator dynamics for public goods game with resource allocation in large populations," Applied Mathematics and Computation, Elsevier, vol. 328(C), pages 162-170.
    17. Yi, Wei & Ozdamar, Linet, 2007. "A dynamic logistics coordination model for evacuation and support in disaster response activities," European Journal of Operational Research, Elsevier, vol. 179(3), pages 1177-1193, June.
    18. Dirk Helbing & Lubos Buzna & Anders Johansson & Torsten Werner, 2005. "Self-Organized Pedestrian Crowd Dynamics: Experiments, Simulations, and Design Solutions," Transportation Science, INFORMS, vol. 39(1), pages 1-24, February.
    19. Yang, Han-Xin & Chen, Xiaojie, 2018. "Promoting cooperation by punishing minority," Applied Mathematics and Computation, Elsevier, vol. 316(C), pages 460-466.
    20. Xiaojie Chen & Attila Szolnoki, 2018. "Punishment and inspection for governing the commons in a feedback-evolving game," PLOS Computational Biology, Public Library of Science, vol. 14(7), pages 1-15, July.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Kang, Zengxin & Zhang, Lei & Li, Kun, 2019. "An improved social force model for pedestrian dynamics in shipwrecks," Applied Mathematics and Computation, Elsevier, vol. 348(C), pages 355-362.
    2. Li, Jun & Fu, Siyao & He, Haibo & Jia, Hongfei & Li, Yanzhong & Guo, Yi, 2015. "Simulating large-scale pedestrian movement using CA and event driven model: Methodology and case study," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 437(C), pages 304-321.
    3. Chen, Chang-Kun & Li, Jian & Zhang, Dong, 2012. "Study on evacuation behaviors at a T-shaped intersection by a force-driving cellular automata model," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 391(7), pages 2408-2420.
    4. Shi, Meng & Lee, Eric Wai Ming & Ma, Yi, 2018. "A novel grid-based mesoscopic model for evacuation dynamics," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 497(C), pages 198-210.
    5. Haghani, Milad, 2021. "The knowledge domain of crowd dynamics: Anatomy of the field, pioneering studies, temporal trends, influential entities and outside-domain impact," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 580(C).
    6. Miyagawa, Daiki & Ichinose, Genki, 2020. "Cellular automaton model with turning behavior in crowd evacuation," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 549(C).
    7. Li, Qiaoru & Zhang, Zhe & Li, Kun & Chen, Liang & Wei, Zhenlin & Zhang, Jingchun, 2020. "Evolutionary dynamics of traveling behavior in social networks," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 545(C).
    8. Huang, Shaoxu & Liu, Xuesong & Hu, Yuhan & Fu, Xiao, 2023. "The influence of aggressive behavior on cooperation evolution in social dilemma," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 630(C).
    9. Ma, Liang & Chen, Bin & Wang, Xiaodong & Zhu, Zhengqiu & Wang, Rongxiao & Qiu, Xiaogang, 2019. "The analysis on the desired speed in social force model using a data driven approach," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 525(C), pages 894-911.
    10. Guo, Ren-Yong, 2014. "Simulation of spatial and temporal separation of pedestrian counter flow through a bottleneck," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 415(C), pages 428-439.
    11. Yang, Kai & Huang, Changwei & Dai, Qionglin & Yang, Junzhong, 2018. "The effects of attribute persistence on cooperation in evolutionary games," Chaos, Solitons & Fractals, Elsevier, vol. 115(C), pages 23-28.
    12. Chen, Qiao & Chen, Tong & Wang, Yongjie, 2019. "Cleverly handling the donation information can promote cooperation in public goods game," Applied Mathematics and Computation, Elsevier, vol. 346(C), pages 363-373.
    13. Liu, Yixue & Mao, Zhanli, 2022. "An experimental study on the critical state of herd behavior in decision-making of the crowd evacuation," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 595(C).
    14. Li, Kun & Mao, Yizhou & Wei, Zhenlin & Cong, Rui, 2021. "Pool-rewarding in N-person snowdrift game," Chaos, Solitons & Fractals, Elsevier, vol. 143(C).
    15. Zheng, Ying & Jia, Bin & Li, Xin-Gang & Zhu, Nuo, 2011. "Evacuation dynamics with fire spreading based on cellular automaton," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 390(18), pages 3147-3156.
    16. Guo, Xiwei & Chen, Jianqiao & Zheng, Yaochen & Wei, Junhong, 2012. "A heterogeneous lattice gas model for simulating pedestrian evacuation," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 391(3), pages 582-592.
    17. Ma, Yi & Yuen, Richard Kwok Kit & Lee, Eric Wai Ming, 2016. "Effective leadership for crowd evacuation," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 450(C), pages 333-341.
    18. Tamang, Nutthavuth & Sun, Yi, 2023. "Application of the dynamic Monte Carlo method to pedestrian evacuation dynamics," Applied Mathematics and Computation, Elsevier, vol. 445(C).
    19. Chen, Liang & Sun, Jingjie & Li, Kun & Li, Qiaoru, 2022. "Research on the effectiveness of monitoring mechanism for “yield to pedestrian” based on system dynamics," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 591(C).
    20. Abdelghany, Ahmed & Abdelghany, Khaled & Mahmassani, Hani & Alhalabi, Wael, 2014. "Modeling framework for optimal evacuation of large-scale crowded pedestrian facilities," European Journal of Operational Research, Elsevier, vol. 237(3), pages 1105-1118.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:chsofr:v:139:y:2020:i:c:s0960077920304963. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Thayer, Thomas R. (email available below). General contact details of provider: https://www.journals.elsevier.com/chaos-solitons-and-fractals .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.