IDEAS home Printed from https://ideas.repec.org/a/gam/jsusta/v16y2023i1p116-d1305188.html
   My bibliography  Save this article

Flood Inundation and Streamflow Changes in the Kabul River Basin under Climate Change

Author

Listed:
  • Sohaib Baig

    (Department of Civil, Environmental and Mechanical Engineering, Trento University, 38122 Trento, Italy
    Disaster Prevention Research Institute (DPRI), Kyoto University, Kyoto 606-8501, Japan)

  • Shabeh ul Hasson

    (HAREME Lab, Institute of Geography, CEN, University of Hamburg, 20148 Hamburg, Germany)

Abstract

The Kabul basin yields around 16% of the total annual water availability in Pakistan. Changing climate will alter the precipitation regime in terms of intensity and frequency, which will affect the water yield and cause flood hazards. Against this background, this study aims to quantify the impacts of changing climate on the water yield, its timings, and, more importantly, the associated flood hazards in the transboundary Kabul basin. For this, we used a rainfall-runoff inundation (RRI) model coupled with the snow and glacier melt routines and drove it for historical and future climates simulated by the atmosphere-only general circulation model (AGCM) at 20 km spatial resolution. The model simulations reveal that rainfall runoff contributes around 50% of the annual flows, and the rest is contributed by glaciers and snow melts. Annual precipitation is projected to increase by 14% from 535 mm, whereas temperatures will rise by 4.7 °C. In turn, the Kabul River flows will only increase by 4% to 1158 m 3 s −1 from 1117 m 3 s −1 , mainly due to an increase in winter flows. In contrast to a minute increase in the mean river flows, the maximum flood inundation area is projected to increase by 37%, whereas its depth will rise between 5 and 20 cm.

Suggested Citation

  • Sohaib Baig & Shabeh ul Hasson, 2023. "Flood Inundation and Streamflow Changes in the Kabul River Basin under Climate Change," Sustainability, MDPI, vol. 16(1), pages 1-14, December.
  • Handle: RePEc:gam:jsusta:v:16:y:2023:i:1:p:116-:d:1305188
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2071-1050/16/1/116/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2071-1050/16/1/116/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. G. R. Lashkaripour & S. A. Hussaini, 2008. "Water resource management in Kabul river basin, eastern Afghanistan," Environment Systems and Decisions, Springer, vol. 28(3), pages 253-260, September.
    2. Md. Rahman & M. Rafiuddin & Md. Alam & Shoji Kusunoki & Akio Kitoh & F. Giorgi, 2013. "Summer monsoon rainfall scenario over Bangladesh using a high-resolution AGCM," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 69(1), pages 793-807, October.
    3. Butera, Ilaria & Balestra, Roberto, 2015. "Estimation of the hydropower potential of irrigation networks," Renewable and Sustainable Energy Reviews, Elsevier, vol. 48(C), pages 140-151.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Marco van Dijk & Stefanus Johannes van Vuuren & Giovanna Cavazzini & Chantel Monica Niebuhr & Alberto Santolin, 2022. "Optimizing Conduit Hydropower Potential by Determining Pareto-Optimal Trade-Off Curve," Sustainability, MDPI, vol. 14(13), pages 1-20, June.
    2. Ludovic Cassan & Guilhem Dellinger & Pascal Maussion & Nicolas Dellinger, 2021. "Hydrostatic Pressure Wheel for Regulation of Open Channel Networks and for the Energy Supply of Isolated Sites," Sustainability, MDPI, vol. 13(17), pages 1-18, August.
    3. Renzi, Massimiliano & Nigro, Alessandra & Rossi, Mosè, 2020. "A methodology to forecast the main non-dimensional performance parameters of pumps-as-turbines (PaTs) operating at Best Efficiency Point (BEP)," Renewable Energy, Elsevier, vol. 160(C), pages 16-25.
    4. Santosh R. Pathak & Neera Shrestha Pradhan & Sadiksha Guragai & Bulbul Baksi & Fayezurahman Azizi & Arun Bhakta Shrestha, 2022. "Complexities and Opportunities of Multi-Stakeholder Partnerships: A Case Study of Water Resource Management in Afghanistan," Sustainability, MDPI, vol. 14(23), pages 1-14, November.
    5. Manzano-Agugliaro, Francisco & Taher, Myriam & Zapata-Sierra, Antonio & Juaidi, Adel & Montoya, Francisco G., 2017. "An overview of research and energy evolution for small hydropower in Europe," Renewable and Sustainable Energy Reviews, Elsevier, vol. 75(C), pages 476-489.
    6. Thais Faria Costa & Ivan Felipe Silva Santos & Geraldo Lúcio Tiago Filho & Regina Mambeli Barros & Rosana Teixeira Miranda, 2021. "Optimum hydropower potential study on nine Brazilian drainage basins using a numerical algorithm," Environment, Development and Sustainability: A Multidisciplinary Approach to the Theory and Practice of Sustainable Development, Springer, vol. 23(2), pages 1729-1758, February.
    7. Omaid Najmuddin & Xiangzheng Deng & Ruchira Bhattacharya, 2018. "The Dynamics of Land Use/Cover and the Statistical Assessment of Cropland Change Drivers in the Kabul River Basin, Afghanistan," Sustainability, MDPI, vol. 10(2), pages 1-18, February.
    8. Azimov, Ulugbek & Avezova, Nilufar, 2022. "Sustainable small-scale hydropower solutions in Central Asian countries for local and cross-border energy/water supply," Renewable and Sustainable Energy Reviews, Elsevier, vol. 167(C).
    9. Keigo Noda & Kazuki Miyai & Kengo Ito & Masateru Senge, 2020. "Effect of Residents’ Involvement with Small Hydropower Projects on Environmental Awareness," Sustainability, MDPI, vol. 12(15), pages 1-14, July.
    10. Kelly-Richards, Sarah & Silber-Coats, Noah & Crootof, Arica & Tecklin, David & Bauer, Carl, 2017. "Governing the transition to renewable energy: A review of impacts and policy issues in the small hydropower boom," Energy Policy, Elsevier, vol. 101(C), pages 251-264.
    11. Gideon Johannes Bonthuys & Marco van Dijk & Giovanna Cavazzini, 2021. "Optimizing the Potential Impact of Energy Recovery and Pipe Replacement on Leakage Reduction in a Medium Sized District Metered Area," Sustainability, MDPI, vol. 13(22), pages 1-23, November.
    12. Thomas J. Mack & Michael P. Chornack & Mohammad R. Taher, 2013. "Groundwater-level trends and implications for sustainable water use in the Kabul Basin, Afghanistan," Environment Systems and Decisions, Springer, vol. 33(3), pages 457-467, September.
    13. Usmani, Sabah & Siddiqi, Afreen & Wescoat, James L., 2021. "Energy generation in the canal irrigation network in India: Integrated spatial planning framework on the Upper Ganga Canal corridor," Renewable and Sustainable Energy Reviews, Elsevier, vol. 152(C).
    14. Zhou, Daqing & Deng, Zhiqun (Daniel), 2017. "Ultra-low-head hydroelectric technology: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 78(C), pages 23-30.
    15. de Souza, Zulcy & Tiago Filho, Geraldo Lúcio & Barros, Regina Mambeli & Silva dos Santos, Ivan Felipe & da Silva, Fernando das Graças Braga & Prado Leite, Marcelo Daige & Prudente, Érica Patricia, 2017. "The limit of sequential exploitation of a river’s hydraulic potential," Renewable and Sustainable Energy Reviews, Elsevier, vol. 68(P1), pages 272-285.
    16. Omaid Najmuddin & Faisal Mueen Qamer & Habib Gul & Weiqing Zhuang & Fan Zhang, 2021. "Cropland use preferences under land, water and labour constraints— implications for wheat self-sufficiency in the Kabul River basin, Afghanistan," Food Security: The Science, Sociology and Economics of Food Production and Access to Food, Springer;The International Society for Plant Pathology, vol. 13(4), pages 955-979, August.
    17. Danish, Mir Sayed Shah & Senjyu, Tomonobu & Sabory, Najib Rahman & Danish, Sayed Mir Shah & Ludin, Gul Ahmad & Noorzad, Ahmad Samim & Yona, Atsushi, 2017. "Afghanistan's aspirations for energy independence: Water resources and hydropower energy," Renewable Energy, Elsevier, vol. 113(C), pages 1276-1287.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jsusta:v:16:y:2023:i:1:p:116-:d:1305188. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.