IDEAS home Printed from https://ideas.repec.org/a/gam/jsusta/v15y2023i9p7427-d1137163.html
   My bibliography  Save this article

Wireless Secret Sharing Game for Internet of Things

Author

Listed:
  • Lei Miao

    (Department of Engineering Technology, Middle Tennessee State University, Murfreesboro, TN 37132, USA
    Current address: Department of Engineering Technology, College of Basic and Applied Sciences, Middle Tennessee State University, Box 19, 1301 E Main St., Murfreesboro, TN 37132, USA.
    These authors contributed equally to this work.)

  • Dingde Jiang

    (School of Information and Communication Engineering, University of Electronic Science and Technology of China, Chengdu 611731, China
    These authors contributed equally to this work.)

  • Hongbo Zhang

    (Department of Engineering Technology, Middle Tennessee State University, Murfreesboro, TN 37132, USA
    These authors contributed equally to this work.)

Abstract

In the era of Internet of Things (IoT), billions of small but smart wireless devices work together to make our cities more intelligent and sustainable. One challenge is that many IoT devices do not have human interfaces and are very difficult for humans to manage. This creates sustainability and security issues. Enabling automatic secret sharing across heterogeneous devices for cryptography purposes will provide the needed security and sustainability for the underlying IoT infrastructure. Therefore, wireless secret sharing is crucial to the success of smart cities. One secret sharing method is to utilize the effect of the randomness of the wireless channel in the data link layer to generate the common secret between legitimate users. This paper models this secret sharing mechanism from the perspective of game theory. In particular, we formulate a non-cooperative zero-sum game between the legitimate users (Alice and Bob) and an eavesdropper (Eve). Alice and Bob’s strategy is deciding how to exchange packets to protect the secret, and Eve’s strategy is choosing where to stay to better intercept the secret. In a symmetrical game where Eve has the same probability of successfully receiving a packet from Alice and Bob when the transmission distance is the same, we show that both pure and mixed strategy Nash equilibria exist. In an asymmetric game where Eve has different probabilities of successfully receiving a packet from Alice and Bob, a pure strategy may not exist; in this case, we show how a mixed strategy Nash equilibrium can be found. We run simulations to show that our results are better than other approaches.

Suggested Citation

  • Lei Miao & Dingde Jiang & Hongbo Zhang, 2023. "Wireless Secret Sharing Game for Internet of Things," Sustainability, MDPI, vol. 15(9), pages 1-14, April.
  • Handle: RePEc:gam:jsusta:v:15:y:2023:i:9:p:7427-:d:1137163
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2071-1050/15/9/7427/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2071-1050/15/9/7427/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Saber Talari & Miadreza Shafie-khah & Pierluigi Siano & Vincenzo Loia & Aurelio Tommasetti & João P. S. Catalão, 2017. "A Review of Smart Cities Based on the Internet of Things Concept," Energies, MDPI, vol. 10(4), pages 1-23, March.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. William Villegas-Ch & Xavier Palacios-Pacheco & Sergio Luján-Mora, 2019. "Application of a Smart City Model to a Traditional University Campus with a Big Data Architecture: A Sustainable Smart Campus," Sustainability, MDPI, vol. 11(10), pages 1-28, May.
    2. Marsal-Llacuna, Maria-Lluïsa, 2018. "Future living framework: Is blockchain the next enabling network?," Technological Forecasting and Social Change, Elsevier, vol. 128(C), pages 226-234.
    3. Mohammed A Raouf & Fazirulhisyam Hashim & Jiun Terng Liew & Kamal Ali Alezabi, 2020. "Pseudorandom sequence contention algorithm for IEEE 802.11ah based internet of things network," PLOS ONE, Public Library of Science, vol. 15(8), pages 1-34, August.
    4. Gleb V. Savin, 2021. "The smart city transport and logistics system: Theory, methodology and practice," Upravlenets, Ural State University of Economics, vol. 12(6), pages 67-86, October.
    5. Naser Hossein Motlagh & Mahsa Mohammadrezaei & Julian Hunt & Behnam Zakeri, 2020. "Internet of Things (IoT) and the Energy Sector," Energies, MDPI, vol. 13(2), pages 1-27, January.
    6. Diogo Abrantes & Marta Campos Ferreira & Paulo Dias Costa & Joana Hora & Soraia Felício & Teresa Galvão Dias & Miguel Coimbra, 2023. "A New Perspective on Supporting Vulnerable Road Users’ Safety, Security and Comfort through Personalized Route Planning," IJERPH, MDPI, vol. 20(4), pages 1-24, February.
    7. Seung-Min Jung & Sungwoo Park & Seung-Won Jung & Eenjun Hwang, 2020. "Monthly Electric Load Forecasting Using Transfer Learning for Smart Cities," Sustainability, MDPI, vol. 12(16), pages 1-20, August.
    8. Elio Chiodo & Maurizio Fantauzzi & Davide Lauria & Fabio Mottola, 2018. "A Probabilistic Approach for the Optimal Sizing of Storage Devices to Increase the Penetration of Plug-in Electric Vehicles in Direct Current Networks," Energies, MDPI, vol. 11(5), pages 1-20, May.
    9. Jun Qiu & Jing Cao & Xinyi Gu & Zimo Ge & Zhe Wang & Zheng Liang, 2023. "Design of an Evaluation System for Disruptive Technologies to Benefit Smart Cities," Sustainability, MDPI, vol. 15(11), pages 1-17, June.
    10. Simone Ferrari & Milad Zoghi & Giancarlo Paganin & Giuliano Dall’O’, 2023. "A Practical Review to Support the Implementation of Smart Solutions within Neighbourhood Building Stock," Energies, MDPI, vol. 16(15), pages 1-35, July.
    11. Bingqian Zhang & Guochao Peng & Caihua Liu & Zuopeng Justin Zhang & Sajjad M. Jasimuddin, 2022. "Adaptation behaviour in using one-stop smart governance apps: an exploratory study between digital immigrants and digital natives," Electronic Markets, Springer;IIM University of St. Gallen, vol. 32(4), pages 1971-1991, December.
    12. Mirosław Kornatka & Tomasz Popławski, 2021. "Advanced Metering Infrastructure—Towards a Reliable Network," Energies, MDPI, vol. 14(18), pages 1-12, September.
    13. Fotios Zantalis & Grigorios Koulouras & Sotiris Karabetsos & Dionisis Kandris, 2019. "A Review of Machine Learning and IoT in Smart Transportation," Future Internet, MDPI, vol. 11(4), pages 1-23, April.
    14. Ahmed WA Hammad & Ali Akbarnezhad & Assed Haddad & Elaine Garrido Vazquez, 2019. "Sustainable Zoning, Land-Use Allocation and Facility Location Optimisation in Smart Cities," Energies, MDPI, vol. 12(7), pages 1-23, April.
    15. Dragos Sebastian CRISTEA & Ruben Cantarero NAVARRO & Javier Sánchez RIQUELME & Marius IVANOV & Muneeb ANWAR & George SUCIU, 2019. "Integrating IoT Modern Communication Architectures into the New Generation of VR/MR Environments," Economics and Applied Informatics, "Dunarea de Jos" University of Galati, Faculty of Economics and Business Administration, issue 2, pages 172-180.
    16. Sousa, Joana & Soares, Isabel, 2023. "Benefits and barriers concerning demand response stakeholder value chain: A systematic literature review," Energy, Elsevier, vol. 280(C).
    17. Debora Sarno & Pierluigi Siano, 2022. "Exploring the Adoption of Service-Dominant Logic as an Integrative Framework for Assessing Energy Transitions," Sustainability, MDPI, vol. 14(15), pages 1-26, August.
    18. Sorin-George Toma & Cătălin Grădinaru & Oana-Simona Hudea & Andra Modreanu, 2023. "Perceptions and Attitudes of Generation Z Students towards the Responsible Management of Smart Cities," Sustainability, MDPI, vol. 15(18), pages 1-40, September.
    19. Clement, Jessica & Ruysschaert, Benoit & Crutzen, Nathalie, 2023. "Smart city strategies – A driver for the localization of the sustainable development goals?," Ecological Economics, Elsevier, vol. 213(C).
    20. Bin Huang & Ke Xing & Stephen Pullen & Lida Liao, 2020. "Exploring Carbon Neutral Potential in Urban Densification: A Precinct Perspective and Scenario Analysis," Sustainability, MDPI, vol. 12(12), pages 1-19, June.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jsusta:v:15:y:2023:i:9:p:7427-:d:1137163. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.