IDEAS home Printed from https://ideas.repec.org/a/ddj/fseeai/y2019i2p172-180.html
   My bibliography  Save this article

Integrating IoT Modern Communication Architectures into the New Generation of VR/MR Environments

Author

Listed:
  • Dragos Sebastian CRISTEA

    (Dunarea de Jos University of Galati, Romania)

  • Ruben Cantarero NAVARRO

    (University of Castilla – La Mancha, Spain)

  • Javier Sánchez RIQUELME

    (Answaretech, Murcia, Spain)

  • Marius IVANOV

    (Altfactor, Galati, Romania)

  • Muneeb ANWAR

    (Beia, Bucharest, Romania)

  • George SUCIU

    (Beia, Bucharest, Romania)

Abstract

This paper presents how modern IoT communication architectures can be successfully used in building both virtual and mixed reality scenarios. The IoT architecture enables the use of LPWAN technologies with a limited Maximum Transmission Unit for an efficient IoT data provision. Based on the IoT communication architecture, this paper will present two study cases, where IoT data can be used in developing complex Mixed Reality (MR) / Virtual Reality (VR) environments. First study case will present how Mixed Reality can be applied for the development of an application based on Microsoft HoloLens© headset. The MR application will allow mixing virtual and real elements for creating an improved context related to possible indoor emergencies getting information at real-time from distributed IoT devices. The MR application that will be presented will cover four topics: virtual evacuation drills, media content display, real-time sensors information access and domotic actions. Second study case will present a solution for building VR environments used for overhead crane training operations based on shipping ports sensors information This paper will emphasize on the fact that based on IoT sensor information it is possible to move from the development of static MR/VR environments, where real, external conditions don’t influence at all the virtual context, to the creation of dynamically generated environments, based on IoT data. This work is developed in the ongoing "Smart City 3D simulation and monitoring platform" (CITISIM) Itea3 project where MR/VR services are being developed in the smart city domain.

Suggested Citation

  • Dragos Sebastian CRISTEA & Ruben Cantarero NAVARRO & Javier Sánchez RIQUELME & Marius IVANOV & Muneeb ANWAR & George SUCIU, 2019. "Integrating IoT Modern Communication Architectures into the New Generation of VR/MR Environments," Economics and Applied Informatics, "Dunarea de Jos" University of Galati, Faculty of Economics and Business Administration, issue 2, pages 172-180.
  • Handle: RePEc:ddj:fseeai:y:2019:i:2:p:172-180
    DOI: https://doi.org/10.35219/eai1584040948
    as

    Download full text from publisher

    File URL: http://www.eia.feaa.ugal.ro/images/eia/2019_2/Cristea_Navarro_Riquelme_Ivanov_Anwar_Suciu.pdf
    Download Restriction: no

    File URL: https://libkey.io/https://doi.org/10.35219/eai1584040948?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Saber Talari & Miadreza Shafie-khah & Pierluigi Siano & Vincenzo Loia & Aurelio Tommasetti & João P. S. Catalão, 2017. "A Review of Smart Cities Based on the Internet of Things Concept," Energies, MDPI, vol. 10(4), pages 1-23, March.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. William Villegas-Ch & Xavier Palacios-Pacheco & Sergio Luján-Mora, 2019. "Application of a Smart City Model to a Traditional University Campus with a Big Data Architecture: A Sustainable Smart Campus," Sustainability, MDPI, vol. 11(10), pages 1-28, May.
    2. Marsal-Llacuna, Maria-Lluïsa, 2018. "Future living framework: Is blockchain the next enabling network?," Technological Forecasting and Social Change, Elsevier, vol. 128(C), pages 226-234.
    3. Mohammed A Raouf & Fazirulhisyam Hashim & Jiun Terng Liew & Kamal Ali Alezabi, 2020. "Pseudorandom sequence contention algorithm for IEEE 802.11ah based internet of things network," PLOS ONE, Public Library of Science, vol. 15(8), pages 1-34, August.
    4. Gleb V. Savin, 2021. "The smart city transport and logistics system: Theory, methodology and practice," Upravlenets, Ural State University of Economics, vol. 12(6), pages 67-86, October.
    5. Naser Hossein Motlagh & Mahsa Mohammadrezaei & Julian Hunt & Behnam Zakeri, 2020. "Internet of Things (IoT) and the Energy Sector," Energies, MDPI, vol. 13(2), pages 1-27, January.
    6. Diogo Abrantes & Marta Campos Ferreira & Paulo Dias Costa & Joana Hora & Soraia Felício & Teresa Galvão Dias & Miguel Coimbra, 2023. "A New Perspective on Supporting Vulnerable Road Users’ Safety, Security and Comfort through Personalized Route Planning," IJERPH, MDPI, vol. 20(4), pages 1-24, February.
    7. Seung-Min Jung & Sungwoo Park & Seung-Won Jung & Eenjun Hwang, 2020. "Monthly Electric Load Forecasting Using Transfer Learning for Smart Cities," Sustainability, MDPI, vol. 12(16), pages 1-20, August.
    8. Elio Chiodo & Maurizio Fantauzzi & Davide Lauria & Fabio Mottola, 2018. "A Probabilistic Approach for the Optimal Sizing of Storage Devices to Increase the Penetration of Plug-in Electric Vehicles in Direct Current Networks," Energies, MDPI, vol. 11(5), pages 1-20, May.
    9. Jun Qiu & Jing Cao & Xinyi Gu & Zimo Ge & Zhe Wang & Zheng Liang, 2023. "Design of an Evaluation System for Disruptive Technologies to Benefit Smart Cities," Sustainability, MDPI, vol. 15(11), pages 1-17, June.
    10. Simone Ferrari & Milad Zoghi & Giancarlo Paganin & Giuliano Dall’O’, 2023. "A Practical Review to Support the Implementation of Smart Solutions within Neighbourhood Building Stock," Energies, MDPI, vol. 16(15), pages 1-35, July.
    11. Bingqian Zhang & Guochao Peng & Caihua Liu & Zuopeng Justin Zhang & Sajjad M. Jasimuddin, 2022. "Adaptation behaviour in using one-stop smart governance apps: an exploratory study between digital immigrants and digital natives," Electronic Markets, Springer;IIM University of St. Gallen, vol. 32(4), pages 1971-1991, December.
    12. Mirosław Kornatka & Tomasz Popławski, 2021. "Advanced Metering Infrastructure—Towards a Reliable Network," Energies, MDPI, vol. 14(18), pages 1-12, September.
    13. Fotios Zantalis & Grigorios Koulouras & Sotiris Karabetsos & Dionisis Kandris, 2019. "A Review of Machine Learning and IoT in Smart Transportation," Future Internet, MDPI, vol. 11(4), pages 1-23, April.
    14. Ahmed WA Hammad & Ali Akbarnezhad & Assed Haddad & Elaine Garrido Vazquez, 2019. "Sustainable Zoning, Land-Use Allocation and Facility Location Optimisation in Smart Cities," Energies, MDPI, vol. 12(7), pages 1-23, April.
    15. Sousa, Joana & Soares, Isabel, 2023. "Benefits and barriers concerning demand response stakeholder value chain: A systematic literature review," Energy, Elsevier, vol. 280(C).
    16. Debora Sarno & Pierluigi Siano, 2022. "Exploring the Adoption of Service-Dominant Logic as an Integrative Framework for Assessing Energy Transitions," Sustainability, MDPI, vol. 14(15), pages 1-26, August.
    17. Sorin-George Toma & Cătălin Grădinaru & Oana-Simona Hudea & Andra Modreanu, 2023. "Perceptions and Attitudes of Generation Z Students towards the Responsible Management of Smart Cities," Sustainability, MDPI, vol. 15(18), pages 1-40, September.
    18. Clement, Jessica & Ruysschaert, Benoit & Crutzen, Nathalie, 2023. "Smart city strategies – A driver for the localization of the sustainable development goals?," Ecological Economics, Elsevier, vol. 213(C).
    19. Bin Huang & Ke Xing & Stephen Pullen & Lida Liao, 2020. "Exploring Carbon Neutral Potential in Urban Densification: A Precinct Perspective and Scenario Analysis," Sustainability, MDPI, vol. 12(12), pages 1-19, June.
    20. Leroux, Erick & Pupion, Pierre-Charles, 2022. "Smart territories and IoT adoption by local authorities: A question of trust, efficiency, and relationship with the citizen-user-taxpayer," Technological Forecasting and Social Change, Elsevier, vol. 174(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:ddj:fseeai:y:2019:i:2:p:172-180. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Gianina Mihai (email available below). General contact details of provider: https://edirc.repec.org/data/fegalro.html .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.