IDEAS home Printed from https://ideas.repec.org/a/gam/jsusta/v15y2023i8p6922-d1127958.html
   My bibliography  Save this article

Valorization of Human Urine with Mixed Microalgae Examined through Population Dynamics, Nutrient Removal, and Biogas Content

Author

Listed:
  • Hande Ermis

    (Department of Environmental Engineering, Istanbul Technical University, Istanbul 34469, Turkey)

  • Unzile Guven Gulhan

    (PHI Tech Bioinformatics R&D Inc., Kocaeli 41400, Turkey)

  • Mehmet Sadik Akca

    (Department of Environmental Engineering, Istanbul Technical University, Istanbul 34469, Turkey)

  • Tunahan Cakir

    (Department of Bioengineering, Gebze Technical University, Kocaeli 41400, Turkey)

  • Mahmut Altinbas

    (Department of Environmental Engineering, Istanbul Technical University, Istanbul 34469, Turkey)

Abstract

The majority of nutrients in municipal wastewater originate from urine. However, when flush water is used, the urine is diluted and mixed with other organic household waste, losing its high-value stream content. This study investigated the effect of source-separated human urine on the population dynamics, nutrient removal, growth, and biogas content of mixed microalgae grown in 250 L raceway ponds. Overall, a maximum biomass concentration of 1847 mg/L was reached, with up to 90% nitrogen and 80% phosphorus removal efficiencies, along with 254.96 L/kg vs. biogas production. The microbial community analysis identified Chlorella sorokiniana (Chlorophyta , Trebouxiophyceae ) as the species with the highest abundance, after confirmation with four different markers (16S rRNA, 18S rRNA, 23S rRNA, and tufA). Moreover, principal component analysis was applied to capture the effect of environmental factors on culture diversity. The abundance of Chlorella sorokiniana increased almost sevenfold when the culture was exposed to open systems compared to the small-scale study carried out in 1 L Erlenmeyer bottles in laboratory conditions, both grown in urine and synthetic media (BBM). In conclusion, the present study contributes to the potential to valorize urine with microalgae by showing its high biogas content, and reveals that microalgae can adapt to adverse environmental conditions by fostering their diversity.

Suggested Citation

  • Hande Ermis & Unzile Guven Gulhan & Mehmet Sadik Akca & Tunahan Cakir & Mahmut Altinbas, 2023. "Valorization of Human Urine with Mixed Microalgae Examined through Population Dynamics, Nutrient Removal, and Biogas Content," Sustainability, MDPI, vol. 15(8), pages 1-16, April.
  • Handle: RePEc:gam:jsusta:v:15:y:2023:i:8:p:6922-:d:1127958
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2071-1050/15/8/6922/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2071-1050/15/8/6922/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Rawat, I. & Ranjith Kumar, R. & Mutanda, T. & Bux, F., 2011. "Dual role of microalgae: Phycoremediation of domestic wastewater and biomass production for sustainable biofuels production," Applied Energy, Elsevier, vol. 88(10), pages 3411-3424.
    2. Guyue Zou & Yuhuan Liu & Qi Zhang & Ting Zhou & Shuyu Xiang & Zhiqiang Gu & Qiaoyun Huang & Hongbin Yan & Hongli Zheng & Xiaodan Wu & Yunpu Wang & Roger Ruan & Mingzhi Liu, 2020. "Cultivation of Chlorella vulgaris in a Light-Receiving-Plate (LRP)-Enhanced Raceway Pond for Ammonium and Phosphorus Removal from Pretreated Pig Urine," Energies, MDPI, vol. 13(7), pages 1-15, April.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Lim, Juin Yau & Teng, Sin Yong & How, Bing Shen & Nam, KiJeon & Heo, SungKu & Máša, Vítězslav & Stehlík, Petr & Yoo, Chang Kyoo, 2022. "From microalgae to bioenergy: Identifying optimally integrated biorefinery pathways and harvest scheduling under uncertainties in predicted climate," Renewable and Sustainable Energy Reviews, Elsevier, vol. 168(C).
    2. Prajapati, Sanjeev Kumar & Malik, Anushree & Vijay, Virendra Kumar, 2014. "Comparative evaluation of biomass production and bioenergy generation potential of Chlorella spp. through anaerobic digestion," Applied Energy, Elsevier, vol. 114(C), pages 790-797.
    3. Najeeha Mohd Apandi & Mimi Suliza Muhamad & Radin Maya Saphira Radin Mohamed & Norshuhaila Mohamed Sunar & Adel Al-Gheethi & Paran Gani & Fahmi A. Rahman, 2021. "Optimizing of Microalgae Scenedesmus sp. Biomass Production in Wet Market Wastewater Using Response Surface Methodology," Sustainability, MDPI, vol. 13(4), pages 1-19, February.
    4. Abomohra, Abd El-Fatah & Jin, Wenbiao & Sagar, Vikram & Ismail, Gehan A., 2018. "Optimization of chemical flocculation of Scenedesmus obliquus grown on municipal wastewater for improved biodiesel recovery," Renewable Energy, Elsevier, vol. 115(C), pages 880-886.
    5. SundarRajan, PanneerSelvam & Gopinath, Kannappan Panchamoorthy & Arun, Jayaseelan & GracePavithra, Kirubanandam & Pavendan, Kumar & AdithyaJoseph, Antonysamy, 2020. "An insight into carbon balance of product streams from hydrothermal liquefaction of Scenedesmus abundans biomass," Renewable Energy, Elsevier, vol. 151(C), pages 79-87.
    6. Zabed, Hossain M. & Akter, Suely & Yun, Junhua & Zhang, Guoyan & Zhang, Yufei & Qi, Xianghui, 2020. "Biogas from microalgae: Technologies, challenges and opportunities," Renewable and Sustainable Energy Reviews, Elsevier, vol. 117(C).
    7. Xiao, Chao & Liao, Qiang & Fu, Qian & Huang, Yun & Chen, Hao & Zhang, Hong & Xia, Ao & Zhu, Xun & Reungsang, Alissara & Liu, Zhidan, 2019. "A solar-driven continuous hydrothermal pretreatment system for biomethane production from microalgae biomass," Applied Energy, Elsevier, vol. 236(C), pages 1011-1018.
    8. Florentino de Souza Silva, Anna Patrícya & Costa, Mayara Carantino & Colzi Lopes, Alexandre & Fares Abdala Neto, Eliezer & Carrhá Leitão, Renato & Mota, César Rossas & Bezerra dos Santos, André, 2014. "Comparison of pretreatment methods for total lipids extraction from mixed microalgae," Renewable Energy, Elsevier, vol. 63(C), pages 762-766.
    9. Kligerman, Debora Cynamon & Bouwer, Edward J., 2015. "Prospects for biodiesel production from algae-based wastewater treatment in Brazil: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 52(C), pages 1834-1846.
    10. Fasahati, Peyman & Wu, Wenzhao & Maravelias, Christos T., 2019. "Process synthesis and economic analysis of cyanobacteria biorefineries: A superstructure-based approach," Applied Energy, Elsevier, vol. 253(C), pages 1-1.
    11. Cabanelas, Iago Teles Dominguez & Arbib, Zouhayr & Chinalia, Fábio A. & Souza, Carolina Oliveira & Perales, José A. & Almeida, Paulo Fernando & Druzian, Janice Izabel & Nascimento, Iracema Andrade, 2013. "From waste to energy: Microalgae production in wastewater and glycerol," Applied Energy, Elsevier, vol. 109(C), pages 283-290.
    12. Trivedi, Jayati & Aila, Mounika & Bangwal, D.P. & Kaul, Savita & Garg, M.O., 2015. "Algae based biorefinery—How to make sense?," Renewable and Sustainable Energy Reviews, Elsevier, vol. 47(C), pages 295-307.
    13. Liu, Aiqiu & Zhu, Tao & Lu, Xuefeng & Song, Lirong, 2013. "Hydrocarbon profiles and phylogenetic analyses of diversified cyanobacterial species," Applied Energy, Elsevier, vol. 111(C), pages 383-393.
    14. Liu, Shou-Heng & Syu, Han-Ren, 2012. "One-step fabrication of N-doped mesoporous TiO2 nanoparticles by self-assembly for photocatalytic water splitting under visible light," Applied Energy, Elsevier, vol. 100(C), pages 148-154.
    15. Maroua El Ouaer & Nejib Turki & Amjad Kallel & Mansour Halaoui & Ismail Trabelsi & Abdennaceur Hassen, 2020. "Recovery of landfill leachate as culture medium for two microalgae: Chlorella sp. and Scenedesmus sp," Environment, Development and Sustainability: A Multidisciplinary Approach to the Theory and Practice of Sustainable Development, Springer, vol. 22(3), pages 2651-2671, March.
    16. Manara, P. & Zabaniotou, A., 2012. "Towards sewage sludge based biofuels via thermochemical conversion – A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 16(5), pages 2566-2582.
    17. Cui, Yan & Yuan, Wenqiao, 2013. "Thermodynamic modeling of algal cell–solid substrate interactions," Applied Energy, Elsevier, vol. 112(C), pages 485-492.
    18. Tripathi, Ritu & Gupta, Asmita & Thakur, Indu Shekhar, 2019. "An integrated approach for phycoremediation of wastewater and sustainable biodiesel production by green microalgae, Scenedesmus sp. ISTGA1," Renewable Energy, Elsevier, vol. 135(C), pages 617-625.
    19. Eyko Medeiros Rios & Danielle Rodrigues Moraes & Gisele Maria Ribeiro Vieira & Bárbara Noronha Gonçalves & Ronney Arismel Mancebo Boloy, 2022. "Dual-fuel compression-ignition engines fuelled with biofuels. A bibliometric review," Environment Systems and Decisions, Springer, vol. 42(1), pages 8-25, March.
    20. Maria I. Silva & Ana L. Gonçalves & Vítor J. P. Vilar & José C. M. Pires, 2021. "Experimental and Techno-Economic Study on the Use of Microalgae for Paper Industry Effluents Remediation," Sustainability, MDPI, vol. 13(3), pages 1-29, January.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jsusta:v:15:y:2023:i:8:p:6922-:d:1127958. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.