IDEAS home Printed from https://ideas.repec.org/a/gam/jsusta/v15y2023i8p6592-d1122734.html
   My bibliography  Save this article

Different Cropping Patterns to Restore Saline-Alkali Soils in Northeast China Affect the Abundance of Functional Genes in the Soil Nitrogen Cycle

Author

Listed:
  • Junnan Ding

    (School of Geography and Tourism, Harbin University, Harbin 150086, China)

  • Bin Li

    (College of Resources and Environment, Northeast Agricultural University, Harbin 150030, China)

  • Minglong Sun

    (Crop Resources Institute, Heilongjiang Academy of Agricultural Sciences, Harbin 150086, China)

  • Xin Li

    (College of Resources and Environment, Northeast Agricultural University, Harbin 150030, China)

Abstract

Considerable attention has been paid to the establishment of an appropriate cropping patterns for the restoration of saline-alkali lands. This study’s goal was to explore changes in nitrogen-cycling (N-cycling) gene (nitrogen fixation: nifH ; nitrification: AOA, AOB, and nxrB ; denitrification: narG , norB , and nosZ ) abundance of three cropping patterns at two soil depths in saline-alkali soils. Results showed that rotation and mixture promoted soil nutrients. N-cycling functional genes were significantly influenced by soil depths and cropping patterns. Compared with monoculture, rotation decreased the abundance of nifH , AOA, narG , and nosZ and increased the abundance of AOB; mixture decreased the abundance of AOA, narG , and nosZ and increased the abundance of AOB and nxrB in the 0–15 cm soil depth. Rotation increased all genes abundance; mixture increased nosZ abundance and decreased nxrB abundance in 15–30 cm soil depth. Soil protease, cellulase, nitrate reductase, pH, AK (available potassium), and AP (available phosphorus) were important factors influencing N-cycling gene abundance. In conclusion, rotation and mixture not only reduced soil salinity but also improved soil fertility and nitrogen cycling. These findings can provide some theories for the sustainable development of N-cycling during the restoration of saline-alkali soils.

Suggested Citation

  • Junnan Ding & Bin Li & Minglong Sun & Xin Li, 2023. "Different Cropping Patterns to Restore Saline-Alkali Soils in Northeast China Affect the Abundance of Functional Genes in the Soil Nitrogen Cycle," Sustainability, MDPI, vol. 15(8), pages 1-20, April.
  • Handle: RePEc:gam:jsusta:v:15:y:2023:i:8:p:6592-:d:1122734
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2071-1050/15/8/6592/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2071-1050/15/8/6592/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Yingxuan Ma & Nigara Tashpolat, 2023. "Current Status and Development Trend of Soil Salinity Monitoring Research in China," Sustainability, MDPI, vol. 15(7), pages 1-25, March.
    2. Amninder Singh & Nigel W. T. Quinn & Sharon E. Benes & Florence Cassel, 2020. "Policy-Driven Sustainable Saline Drainage Disposal and Forage Production in the Western San Joaquin Valley of California," Sustainability, MDPI, vol. 12(16), pages 1-27, August.
    3. Ram K. Fagodiya & Sandeep K. Malyan & Devendra Singh & Amit Kumar & Rajender K. Yadav & Parbodh C. Sharma & Himanshu Pathak, 2022. "Greenhouse Gas Emissions from Salt-Affected Soils: Mechanistic Understanding of Interplay Factors and Reclamation Approaches," Sustainability, MDPI, vol. 14(19), pages 1-25, September.
    4. Christopher M. Jones & Ayme Spor & Fiona P. Brennan & Marie-Christine Breuil & David Bru & Philippe Lemanceau & Bryan Griffiths & Sara Hallin & Laurent Philippot, 2014. "Recently identified microbial guild mediates soil N2O sink capacity," Nature Climate Change, Nature, vol. 4(9), pages 801-805, September.
    5. Zhenlei Wang & Weiliang Zhao & Linqiao Xi, 2022. "Alfalfa Cover Crops Influence the Soil Fungal Community and Function in Apple Orchards in Arid Desert Oases in Northwest China," Sustainability, MDPI, vol. 14(19), pages 1-14, September.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Pascazio, Silvia & Crecchio, Carmine & Scagliola, Marina & Mininni, Alba N. & Dichio, Bartolomeo & Xiloyannis, Cristos & Sofo, Adriano, 2018. "Microbial-based soil quality indicators in irrigated and rainfed soil portions of Mediterranean olive and peach orchards under sustainable management," Agricultural Water Management, Elsevier, vol. 195(C), pages 172-179.
    2. Nigel W. T. Quinn, 2020. "Policy Innovation and Governance for Irrigation Sustainability in the Arid, Saline San Joaquin River Basin," Sustainability, MDPI, vol. 12(11), pages 1-38, June.
    3. Yunpeng Qiu & Yi Zhang & Kangcheng Zhang & Xinyu Xu & Yunfeng Zhao & Tongshuo Bai & Yexin Zhao & Hao Wang & Xiongjie Sheng & Sean Bloszies & Christopher J. Gillespie & Tangqing He & Yang Wang & Huaiha, 2024. "Intermediate soil acidification induces highest nitrous oxide emissions," Nature Communications, Nature, vol. 15(1), pages 1-12, December.
    4. Changcong An & Fenglan Han & Ning Li & Jintao Zheng & Maohui Li & Yanan Liu & Haipeng Liu, 2024. "Improving Physical and Chemical Properties of Saline Soils with Fly Ash Saline and Alkaline Amendment Materials," Sustainability, MDPI, vol. 16(8), pages 1-20, April.
    5. Krzysztof Tomczyk, 2023. "Extended Calibration of Charge Mode Accelerometers to Improve the Accuracy of Energy Systems," Energies, MDPI, vol. 16(22), pages 1-14, November.
    6. William C Nelson & Emily B Graham & Alex R Crump & Sarah J Fansler & Evan V Arntzen & David W Kennedy & James C Stegen, 2020. "Distinct temporal diversity profiles for nitrogen cycling genes in a hyporheic microbiome," PLOS ONE, Public Library of Science, vol. 15(1), pages 1-19, January.
    7. Liu, Lining & Zuo, Qiang & Shi, Jianchu & Wu, Xun & Wei, Congmin & Sheng, Jiandong & Jiang, Pingan & Chen, Quanjia & Ben-Gal, Alon, 2023. "Balancing economic benefits and environmental repercussions based on smart irrigation by regulating root zone water and salinity dynamics," Agricultural Water Management, Elsevier, vol. 285(C).
    8. Antonio Ganga & Mario Elia & Blaž Repe, 2023. "Applications of GIS and Remote Sensing in Soil Environment Monitoring," Sustainability, MDPI, vol. 15(18), pages 1-2, September.
    9. Shuoyang Li & Guiyu Yang & Cui Chang & Hao Wang & Hongling Zhang & Na Zhang & Zhigong Peng & Yaomingqi Song, 2024. "Remote Sensing Inversion of Salinization Degree Distribution and Analysis of Its Influencing Factors in an Arid Irrigated District," Land, MDPI, vol. 13(4), pages 1-18, March.
    10. He, Wentian & Jiang, Rong & He, Ping & Yang, Jingyi & Zhou, Wei & Ma, Jinchuan & Liu, Yingxia, 2018. "Estimating soil nitrogen balance at regional scale in China’s croplands from 1984 to 2014," Agricultural Systems, Elsevier, vol. 167(C), pages 125-135.
    11. Sandeep Sharma & Nihar Gupta & Anmoldeep Singh Chakkal & Neha Sharma & Saud Alamri & Manzer H. Siddiqui & Fasih Ullah Haider, 2023. "Changes in Enzyme Activities in Salt-Affected Soils during Incubation Study of Diverse Particle Sizes of Rice Straw," Agriculture, MDPI, vol. 13(9), pages 1-12, August.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jsusta:v:15:y:2023:i:8:p:6592-:d:1122734. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.