IDEAS home Printed from https://ideas.repec.org/a/gam/jsusta/v15y2023i7p5618-d1104923.html
   My bibliography  Save this article

GPS Data Analytics for the Assessment of Public City Bus Transportation Service Quality in Bangkok

Author

Listed:
  • Rathachai Chawuthai

    (School of Engineering, King Mongkut’s Institute of Technology Ladkrabang, Bangkok 10520, Thailand)

  • Agachai Sumalee

    (School of Integrated Innovation, Chulalongkorn University, Bangkok 10330, Thailand)

  • Thanunchai Threepak

    (School of Engineering, King Mongkut’s Institute of Technology Ladkrabang, Bangkok 10520, Thailand)

Abstract

Evaluation of the quality of service (QoS) of public city buses is generally performed using surveys that assess attributes such as accessibility, availability, comfort, convenience, reliabilities, safety, security, etc. Each survey attribute is assessed from the subjective viewpoint of the service users. This is reliable and straightforward because the consumer is the one who accesses the bus service. However, in addition to summarizing personal feedback from humans, using data analytics has become another useful method for assessing the QoS of bus transportation. This work aims to use global positioning system (GPS) data to measure the reliability, accessibility, and availability of bus transportation services. There are three QoS scoring functions for tracking complete trips, on-path driving, and on-schedule operation. In the analytical process, GPS coordinates rounding is adopted and applied for detecting trips on each route path. After assessing the three QoS scores, it has been found that most bus routes have good operations with high scores, while some bus routes show room for improvement. Future work could use our data to create recommendations for policy makers in terms of how to improve a city’s smart mobility.

Suggested Citation

  • Rathachai Chawuthai & Agachai Sumalee & Thanunchai Threepak, 2023. "GPS Data Analytics for the Assessment of Public City Bus Transportation Service Quality in Bangkok," Sustainability, MDPI, vol. 15(7), pages 1-23, March.
  • Handle: RePEc:gam:jsusta:v:15:y:2023:i:7:p:5618-:d:1104923
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2071-1050/15/7/5618/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2071-1050/15/7/5618/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Zhang Xiaoliang & Jia Limin, 2021. "Analysis of Bus Line Operation Reliability Based on Copula Function," Sustainability, MDPI, vol. 13(15), pages 1-15, July.
    2. Swati Goyal & Shivi Agarwal & Narinderjit Singh Sawaran Singh & Trilok Mathur & Nirbhay Mathur, 2022. "Analysis of Hybrid MCDM Methods for the Performance Assessment and Ranking Public Transport Sector: A Case Study," Sustainability, MDPI, vol. 14(22), pages 1-21, November.
    3. Gschwender, Antonio & Munizaga, Marcela & Simonetti, Carolina, 2016. "Using smart card and GPS data for policy and planning: The case of Transantiago," Research in Transportation Economics, Elsevier, vol. 59(C), pages 242-249.
    4. Wei Chiang Chan & Wan Hashim Wan Ibrahim & May Chiun Lo & Mohamad Kadim Suaidi & Shiaw Tong Ha, 2020. "Sustainability of Public Transportation: An Examination of User Behavior to Real-Time GPS Tracking Application," Sustainability, MDPI, vol. 12(22), pages 1-20, November.
    5. Vladimír Ľupták & Paweł Droździel & Ondrej Stopka & Mária Stopková & Iwona Rybicka, 2019. "Approach Methodology for Comprehensive Assessing the Public Passenger Transport Timetable Performances at a Regional Scale," Sustainability, MDPI, vol. 11(13), pages 1-18, June.
    6. Leng, Nuannuan & Corman, Francesco, 2020. "The role of information availability to passengers in public transport disruptions: An agent-based simulation approach," Transportation Research Part A: Policy and Practice, Elsevier, vol. 133(C), pages 214-236.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Vladimír Konečný & Jozef Gnap & Tomáš Settey & František Petro & Tomáš Skrúcaný & Tomasz Figlus, 2020. "Environmental Sustainability of the Vehicle Fleet Change in Public City Transport of Selected City in Central Europe," Energies, MDPI, vol. 13(15), pages 1-23, July.
    2. Paulsen, Mads & Rasmussen, Thomas Kjær & Nielsen, Otto Anker, 2021. "Impacts of real-time information levels in public transport: A large-scale case study using an adaptive passenger path choice model," Transportation Research Part A: Policy and Practice, Elsevier, vol. 148(C), pages 155-182.
    3. Krystyna Pieniak-Lendzion & Krzysztof Pakula & Beata Kuziemska, 2021. "Analysis and Operations of Passenger Rail Transport in Poland and Selected EU States," European Research Studies Journal, European Research Studies Journal, vol. 0(1), pages 1100-1113.
    4. Yap, Menno & Munizaga, Marcela, 2018. "Workshop 8 report: Big data in the digital age and how it can benefit public transport users," Research in Transportation Economics, Elsevier, vol. 69(C), pages 615-620.
    5. Hui Zheng & Baohong He & Mingwei He & Jinghui Guo, 2022. "Impact of Urban Spatial Transformation on the Mobility of Commuters with Different Transportation Modes in China: Evidence from Kunming 2011–2016," Sustainability, MDPI, vol. 14(13), pages 1-22, June.
    6. Cortés, Cristián E. & Donoso, Pedro & Gutiérrez, Leonel & Herl, Daniel & Muñoz, Diego, 2023. "A recursive stochastic transit equilibrium model estimated using passive data from Santiago, Chile," Transportation Research Part B: Methodological, Elsevier, vol. 174(C).
    7. Pezoa, Raúl & Basso, Franco & Quilodrán, Paulina & Varas, Mauricio, 2023. "Estimation of trip purposes in public transport during the COVID-19 pandemic: The case of Santiago, Chile," Journal of Transport Geography, Elsevier, vol. 109(C).
    8. Gnap Jozef & Dočkalik Marek & Dydkowski Grzegorz, 2021. "Examination of the Development of New Bus Registrations with Alternative Powertrains in Europe," LOGI – Scientific Journal on Transport and Logistics, Sciendo, vol. 12(1), pages 147-158, January.
    9. Kan Wang & Jianjun Bai & Xing Dang, 2020. "Spatial Difference and Equity Analysis for Accessibility to Three-Level Medical Services Based on Actual Medical Behavior in Shaanxi, China," IJERPH, MDPI, vol. 18(1), pages 1-20, December.
    10. Roman Roaljdovich Sidorchuk & Anastasia Vladimirovna Lukina & Sergey Vladimirovich Mkhitaryan & Irina Ivanovna Skorobogatykh & Anastasia Alexeevna Stukalova, 2021. "Local Resident Attitudes to the Sustainable Development of Urban Public Transport System," Sustainability, MDPI, vol. 13(22), pages 1-25, November.
    11. Chengli Cong & Xuan Li & Shiwei Yang & Quan Zhang & Lili Lu & Yang Shi, 2022. "Impact Estimation of Unplanned Urban Rail Disruptions on Public Transport Passengers: A Multi-Agent Based Simulation Approach," IJERPH, MDPI, vol. 19(15), pages 1-25, July.
    12. Radovan MADLEŇÁK & Lucia MADLEŇÁKOVÁ, 2020. "Multi-Criteria Evaluation Of E-Shop Methods Of Delivery From The Customer'S Perspective," Transport Problems, Silesian University of Technology, Faculty of Transport, vol. 15(1), pages 5-14, March.
    13. Malandri, Caterina & Mantecchini, Luca & Postorino, Maria Nadia, 2023. "A comprehensive approach to assess transportation system resilience towards disruptive events. Case study on airside airport systems," Transport Policy, Elsevier, vol. 139(C), pages 109-122.
    14. Munizaga, Marcela A. & Gschwender, Antonio & Gallegos, Nestor, 2020. "Fare evasion correction for smartcard-based origin-destination matrices," Transportation Research Part A: Policy and Practice, Elsevier, vol. 141(C), pages 307-322.
    15. Elisa Borowski & Jason Soria & Joseph Schofer & Amanda Stathopoulos, 2020. "Disparities in ridesourcing demand for mobility resilience: A multilevel analysis of neighborhood effects in Chicago, Illinois," Papers 2010.15889, arXiv.org.
    16. Gutiérrez, Antonio, 2022. "Movilidad urbana y datos de alta frecuencia [Urban mobility and high frequency data]," MPRA Paper 114854, University Library of Munich, Germany.
    17. Amaya, Margarita & Cruzat, Ramón & Munizaga, Marcela A., 2018. "Estimating the residence zone of frequent public transport users to make travel pattern and time use analysis," Journal of Transport Geography, Elsevier, vol. 66(C), pages 330-339.
    18. Jacqueline Arriagada & Claudio Mena & Marcela Munizaga & Daniel Schwartz, 2023. "The effect of economic incentives and cooperation messages on user participation in crowdsourced public transport technologies," Transportation, Springer, vol. 50(5), pages 1585-1612, October.
    19. Bădău Florin & Cormoș Angel Ciprian & Iordache Valentin & Abramović Borna, 2020. "Management of Urban and Regional Rail: Case Study Bucharest," LOGI – Scientific Journal on Transport and Logistics, Sciendo, vol. 11(2), pages 120-131, November.
    20. Kuo, Yong-Hong & Leung, Janny M.Y. & Yan, Yimo, 2023. "Public transport for smart cities: Recent innovations and future challenges," European Journal of Operational Research, Elsevier, vol. 306(3), pages 1001-1026.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jsusta:v:15:y:2023:i:7:p:5618-:d:1104923. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.