IDEAS home Printed from https://ideas.repec.org/a/gam/jsusta/v15y2023i6p5577-d1104152.html
   My bibliography  Save this article

The Power Transition under the Interaction of Different Systems—A Case Study of the Guangdong–Hong Kong–Macao Greater Bay Area

Author

Listed:
  • Wenxiu Wang

    (Guangzhou Institute of Energy Conversion, Chinese Academy of Sciences, Guangzhou 510642, China
    School of Energy Science and Engineering, University of Science and Technology of China, Hefei 230026, China)

  • Yuejun Luo

    (Power China Jiangxi Electric Power Construction Co., Ltd., Nanchang 330006, China)

  • Daiqing Zhao

    (Guangzhou Institute of Energy Conversion, Chinese Academy of Sciences, Guangzhou 510642, China
    School of Energy Science and Engineering, University of Science and Technology of China, Hefei 230026, China)

Abstract

Power transition is the top priority in energy transition. All existing power transition paths have been studied under the same system; thus far, no basic research has investigated what paths are involved and how they cooperate with each other under the interaction of different systems. Taking the Guangdong–Hong Kong–Macao Greater Bay Area (GBA), featuring a “one country, two systems” approach, as an example, this research identified and quantified the best path for the GBA’s power transition and explored the mode of cooperation during the power transition among the three regions under the interaction of different systems. The results showed that a combination of multiple low-carbon technologies is the best option for the GBA’s deep power transition, which can be characterized by the following components: “gas increase, nuclear increase, coal guarantee, and low proportion of renewable energy”. In this scenario, the GBA can achieve a carbon peak of 167 million tons of CO 2 in 2023. Before 2030, the GBA needs to first develop class H gas power, photovoltaic power and nuclear power while phasing out subcritical and below thermal power cogeneration, and subcritical and below coal power. After 2030, a significant increase will be needed in the installed capacity of distributed gas power to replace some class E and F gas power units. Distributed rooftop PV power generation will be the mainstream method of renewable energy generation. Power generation through waste incineration can also provide a prominent contribution to urban biomass power. Under the interaction of different systems, breaking the technical barriers among the three regions would represent a breakthrough for establishing a cooperative power transition. A “one primary system, two auxiliary systems” theoretical framework of cooperation is proposed, and the scope of its application is revealed. This study can provide a case reference for the establishment of a win–win cooperation mechanism for energy transition in different countries.

Suggested Citation

  • Wenxiu Wang & Yuejun Luo & Daiqing Zhao, 2023. "The Power Transition under the Interaction of Different Systems—A Case Study of the Guangdong–Hong Kong–Macao Greater Bay Area," Sustainability, MDPI, vol. 15(6), pages 1-22, March.
  • Handle: RePEc:gam:jsusta:v:15:y:2023:i:6:p:5577-:d:1104152
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2071-1050/15/6/5577/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2071-1050/15/6/5577/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Trainer, Ted, 2010. "Can renewables etc. solve the greenhouse problem? The negative case," Energy Policy, Elsevier, vol. 38(8), pages 4107-4114, August.
    2. Liu, Yu & Tan, Xiu-Jie & Yu, Yang & Qi, Shao-Zhou, 2017. "Assessment of impacts of Hubei Pilot emission trading schemes in China – A CGE-analysis using TermCO2 model," Applied Energy, Elsevier, vol. 189(C), pages 762-769.
    3. Peter J. Loftus & Armond M. Cohen & Jane C. S. Long & Jesse D. Jenkins, 2015. "A critical review of global decarbonization scenarios: what do they tell us about feasibility?," Wiley Interdisciplinary Reviews: Climate Change, John Wiley & Sons, vol. 6(1), pages 93-112, January.
    4. Sithole, H. & Cockerill, T.T. & Hughes, K.J. & Ingham, D.B. & Ma, L. & Porter, R.T.J. & Pourkashanian, M., 2016. "Developing an optimal electricity generation mix for the UK 2050 future," Energy, Elsevier, vol. 100(C), pages 363-373.
    5. Frković, Lovro & Ćosić, Boris & Pukšec, Tomislav & Vladimir, Nikola, 2022. "The synergy between the photovoltaic power systems and battery-powered electric ferries in the isolated energy system of an island," Energy, Elsevier, vol. 259(C).
    6. Alexander E. MacDonald & Christopher T. M. Clack & Anneliese Alexander & Adam Dunbar & James Wilczak & Yuanfu Xie, 2016. "Future cost-competitive electricity systems and their impact on US CO2 emissions," Nature Climate Change, Nature, vol. 6(5), pages 526-531, May.
    7. Trainer, Ted, 2013. "Can Europe run on renewable energy? A negative case," Energy Policy, Elsevier, vol. 63(C), pages 845-850.
    8. Schlachtberger, D.P. & Brown, T. & Schäfer, M. & Schramm, S. & Greiner, M., 2018. "Cost optimal scenarios of a future highly renewable European electricity system: Exploring the influence of weather data, cost parameters and policy constraints," Energy, Elsevier, vol. 163(C), pages 100-114.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Cole, Wesley & Antonysamy, Adithya & Brown, Patrick & Sergi, Brian & Mai, Trieu & Denholm, Paul, 2023. "How much might it cost to decarbonize the power sector? It depends on the metric," Energy, Elsevier, vol. 276(C).
    2. Trainer, Ted, 2014. "The limits to solar thermal electricity," Energy Policy, Elsevier, vol. 73(C), pages 57-64.
    3. Hong, Sanghyun & Bradshaw, Corey J.A. & Brook, Barry W., 2015. "Global zero-carbon energy pathways using viable mixes of nuclear and renewables," Applied Energy, Elsevier, vol. 143(C), pages 451-459.
    4. Reichenberg, Lina & Hedenus, Fredrik & Mattsson, Niclas & Verendel, Vilhelm, 2022. "Deep decarbonization and the supergrid – Prospects for electricity transmission between Europe and China," Energy, Elsevier, vol. 239(PE).
    5. Carlos Castro & Iñigo Capellán-Pérez, 2018. "Concentrated Solar Power: Actual Performance and Foreseeable Future in High Penetration Scenarios of Renewable Energies," Biophysical Economics and Resource Quality, Springer, vol. 3(3), pages 1-20, September.
    6. Carlos de Castro & Iñigo Capellán-Pérez, 2020. "Standard, Point of Use, and Extended Energy Return on Energy Invested (EROI) from Comprehensive Material Requirements of Present Global Wind, Solar, and Hydro Power Technologies," Energies, MDPI, vol. 13(12), pages 1-43, June.
    7. Heard, B.P. & Brook, B.W. & Wigley, T.M.L. & Bradshaw, C.J.A., 2017. "Burden of proof: A comprehensive review of the feasibility of 100% renewable-electricity systems," Renewable and Sustainable Energy Reviews, Elsevier, vol. 76(C), pages 1122-1133.
    8. Patrick Moriarty & Damon Honnery, 2020. "Feasibility of a 100% Global Renewable Energy System," Energies, MDPI, vol. 13(21), pages 1-16, October.
    9. Hansen, Kenneth & Breyer, Christian & Lund, Henrik, 2019. "Status and perspectives on 100% renewable energy systems," Energy, Elsevier, vol. 175(C), pages 471-480.
    10. Diesendorf, Mark & Elliston, Ben, 2018. "The feasibility of 100% renewable electricity systems: A response to critics," Renewable and Sustainable Energy Reviews, Elsevier, vol. 93(C), pages 318-330.
    11. Capellán-Pérez, Iñigo & de Castro, Carlos & Arto, Iñaki, 2017. "Assessing vulnerabilities and limits in the transition to renewable energies: Land requirements under 100% solar energy scenarios," Renewable and Sustainable Energy Reviews, Elsevier, vol. 77(C), pages 760-782.
    12. Trainer, Ted, 2013. "Limits to solar thermal energy set by intermittency and low DNI: Implications from meteorological data," Energy Policy, Elsevier, vol. 63(C), pages 910-917.
    13. Barry W. Brook & Tom Blees & Tom M. L. Wigley & Sanghyun Hong, 2018. "Silver Buckshot or Bullet: Is a Future “Energy Mix” Necessary?," Sustainability, MDPI, vol. 10(2), pages 1-14, January.
    14. de Chalendar, Jacques A. & Benson, Sally M., 2021. "A physics-informed data reconciliation framework for real-time electricity and emissions tracking," Applied Energy, Elsevier, vol. 304(C).
    15. Koecklin, Manuel Tong & Longoria, Genaro & Fitiwi, Desta Z. & DeCarolis, Joseph F. & Curtis, John, 2021. "Public acceptance of renewable electricity generation and transmission network developments: Insights from Ireland," Energy Policy, Elsevier, vol. 151(C).
    16. Haoran Zhang & Rongxia Zhang & Guomin Li & Wei Li & Yongrok Choi, 2020. "Has China’s Emission Trading System Achieved the Development of a Low-Carbon Economy in High-Emission Industrial Subsectors?," Sustainability, MDPI, vol. 12(13), pages 1-20, July.
    17. Muhammad Shahbaz & Vassilios G. Papavassiliou & Amine Lahiani & David Roubaud, 2023. "Are we moving towards decarbonisation of the global economy? Lessons from the distant past to the present," International Journal of Finance & Economics, John Wiley & Sons, Ltd., vol. 28(3), pages 2620-2634, July.
    18. Yongrok Choi & Hyoungsuk Lee, 2023. "Current Advances in Green Governance and CO 2 Emissions towards Sustainable Development," Sustainability, MDPI, vol. 15(15), pages 1-8, August.
    19. Behrang Shirizadeh, Quentin Perrier, and Philippe Quirion, 2022. "How Sensitive are Optimal Fully Renewable Power Systems to Technology Cost Uncertainty?," The Energy Journal, International Association for Energy Economics, vol. 0(Number 1).
    20. Capellán-Pérez, Iñigo & Campos-Celador, Álvaro & Terés-Zubiaga, Jon, 2018. "Renewable Energy Cooperatives as an instrument towards the energy transition in Spain," Energy Policy, Elsevier, vol. 123(C), pages 215-229.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jsusta:v:15:y:2023:i:6:p:5577-:d:1104152. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.