IDEAS home Printed from https://ideas.repec.org/a/gam/jsusta/v15y2023i6p5417-d1101194.html
   My bibliography  Save this article

Rainfall Influences the Patterns of Diversity and Species Distribution in Sandy Beaches of the Amazon Coast

Author

Listed:
  • Helio H. Checon

    (Departamento de Biologia Animal, Instituto de Biologia, Universidade Estadual de Campinas, São Paulo 13083-970, SP, Brazil)

  • Hugo H. R. Costa

    (Departamento de Ciências Biológicas e da Saúde, Universidade Federal do Amapá, Macapá 68903-419, AP, Brazil)

  • Guilherme N. Corte

    (College of Science and Mathematics, University of the Virgin Islands, St. Thomas, VI 00802, USA)

  • Fernanda M. Souza

    (Instituto Estadual de Pesquisa do Amapá, Macapá 68906-440, AP, Brazil
    Instituto Chico Mendes de Conservação da Biodiversidade, Macapá 68901-625, AP, Brazil)

  • Maíra Pombo

    (Departamento de Ciências Biológicas e da Saúde, Universidade Federal do Amapá, Macapá 68903-419, AP, Brazil)

Abstract

The Amazon region is one of the Earth’s hotspots of biodiversity and has a pivotal role in climate regulation. Yet, little is known about its coastal biodiversity. Here, we performed the first assessment of macrobenthic diversity and ecological patterns of sandy beaches north of the Amazon River delta, the world’s largest freshwater input into the oceans. By assessing spatial and temporal changes in the soft-bottom biodiversity and environmental variables of three beaches (Goiabal, Nazaré, and Sumaúma) in the northernmost stretch of the Brazilian coast, we found low richness (14 taxa, overall; Goiabal: 3.27 ± 1.78; Nazaré: 2.34 ± 1.29; Sumaúma: 2 ± 0.67) and diversity (Goiabal: 0.72 ± 0.52; Nazaré: 0.62 ± 0.46; Sumaúma: 0.55 ± 0.39) across 2949 individuals with great dominance of estuarine species (notably Nephthys fluviatis and Sphaeromopsis mourei ). Abundance was higher during rainy periods, and the same pattern was observed for richness and diversity in comparison to transitional periods, at least on Nazaré Beach. Environmental heterogeneity was reduced during rainy periods, resulting in a higher abundance of dominant species and lower beta diversity. Most species presented aggregated distribution at the upper intertidal zone, and changes in macrobenthic assemblages were linked to variations in rainfall and organic matter content in the sediment. Given the ecological uniqueness and the severe erosional process affecting the northern coast of the Amazon region, our results provide essential baseline knowledge to better understand the patterns and processes influencing its understudied biodiversity. We advocate that further studies expand our findings to support the conservation of this region.

Suggested Citation

  • Helio H. Checon & Hugo H. R. Costa & Guilherme N. Corte & Fernanda M. Souza & Maíra Pombo, 2023. "Rainfall Influences the Patterns of Diversity and Species Distribution in Sandy Beaches of the Amazon Coast," Sustainability, MDPI, vol. 15(6), pages 1-15, March.
  • Handle: RePEc:gam:jsusta:v:15:y:2023:i:6:p:5417-:d:1101194
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2071-1050/15/6/5417/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2071-1050/15/6/5417/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Chris A. Boulton & Timothy M. Lenton & Niklas Boers, 2022. "Pronounced loss of Amazon rainforest resilience since the early 2000s," Nature Climate Change, Nature, vol. 12(3), pages 271-278, March.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Rebecca Froese & Claudia Pinzón & Loreto Aceitón & Tarik Argentim & Marliz Arteaga & Juan Sebastian Navas-Guzmán & Gleiciane Pismel & Sophia Florence Scherer & Jannis Reutter & Janpeter Schilling & Re, 2022. "Conflicts over Land as a Risk for Social-Ecological Resilience: A Transnational Comparative Analysis in the Southwestern Amazon," Sustainability, MDPI, vol. 14(11), pages 1-20, May.
    2. Maya Ben-Yami & Vanessa Skiba & Sebastian Bathiany & Niklas Boers, 2023. "Uncertainties in critical slowing down indicators of observation-based fingerprints of the Atlantic Overturning Circulation," Nature Communications, Nature, vol. 14(1), pages 1-11, December.
    3. Yongheng Rao & Jianjun Zhang, 2022. "Revealing the Land Use Volatility Process in Northern Southeast Asia," Land, MDPI, vol. 11(7), pages 1-14, July.
    4. Florian Diekert & Daniel Heyen & Frikk Nesje & Soheil Shayegh, 2024. "Balancing the Risk of Tipping: Early Warning Systems from Detection to Management," CESifo Working Paper Series 10892, CESifo.
    5. Derek Sheehan & Katrina Mullan & Thales A. P. West & Erin O. Semmens, 2024. "Protecting Life and Lung: Protected Areas Affect Fine Particulate Matter and Respiratory Hospitalizations in the Brazilian Amazon Biome," Environmental & Resource Economics, Springer;European Association of Environmental and Resource Economists, vol. 87(1), pages 45-87, January.
    6. Kelly Wanser & Sarah J. Doherty & James W. Hurrell & Alex Wong, 2022. "Near-term climate risks and sunlight reflection modification: a roadmap approach for physical sciences research," Climatic Change, Springer, vol. 174(3), pages 1-20, October.
    7. Timothy M. Lenton & Jesse F. Abrams & Annett Bartsch & Sebastian Bathiany & Chris A. Boulton & Joshua E. Buxton & Alessandra Conversi & Andrew M. Cunliffe & Sophie Hebden & Thomas Lavergne & Benjamin , 2024. "Remotely sensing potential climate change tipping points across scales," Nature Communications, Nature, vol. 15(1), pages 1-15, December.
    8. Joana Castro Pereira & João Terrenas, 2022. "Towards a transformative governance of the Amazon," Global Policy, London School of Economics and Political Science, vol. 13(S3), pages 60-75, December.
    9. Fabio R. Marin & Alencar J. Zanon & Juan P. Monzon & José F. Andrade & Evandro H. F. M. Silva & Gean L. Richter & Luis A. S. Antolin & Bruna S. M. R. Ribeiro & Giovana G. Ribas & Rafael Battisti & Ale, 2022. "Protecting the Amazon forest and reducing global warming via agricultural intensification," Nature Sustainability, Nature, vol. 5(12), pages 1018-1026, December.
    10. Taylor Smith & Niklas Boers, 2023. "Global vegetation resilience linked to water availability and variability," Nature Communications, Nature, vol. 14(1), pages 1-11, December.
    11. Bruno Ubiali & Miguel Alexiades, 2022. "Forests, Fields, and Pastures: Unequal Access to Brazil Nuts and Livelihood Strategies in an Extractive Reserve, Brazilian Amazon," Land, MDPI, vol. 11(7), pages 1-21, June.
    12. Zhao Li & Philippe Ciais & Jonathon S. Wright & Yong Wang & Shu Liu & Jingmeng Wang & Laurent Z. X. Li & Hui Lu & Xiaomeng Huang & Lei Zhu & Daniel S. Goll & Wei Li, 2023. "Increased precipitation over land due to climate feedback of large-scale bioenergy cultivation," Nature Communications, Nature, vol. 14(1), pages 1-9, December.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jsusta:v:15:y:2023:i:6:p:5417-:d:1101194. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.