IDEAS home Printed from https://ideas.repec.org/a/gam/jsusta/v15y2023i5p4378-d1084409.html
   My bibliography  Save this article

Saline–Alkaline Characteristics during Desalination Process and Nitrogen Input Regulation in Reclaimed Tidal Flat Soils

Author

Listed:
  • Yunpeng Sun

    (State Key Laboratory of Soil and Sustainable Agriculture, Institute of Soil Science, Chinese Academy of Sciences, Nanjing 210008, China
    These authors contributed equally to this work.)

  • Xin Zhang

    (State Key Laboratory of Soil and Sustainable Agriculture, Institute of Soil Science, Chinese Academy of Sciences, Nanjing 210008, China
    These authors contributed equally to this work.)

  • Jingtian Xian

    (Key Laboratory of Coastal Environmental Processes and Ecological Restoration, Yantai Institute of Coastal Zone Research, Chinese Academy of Sciences, Yantai 264003, China)

  • Jingsong Yang

    (State Key Laboratory of Soil and Sustainable Agriculture, Institute of Soil Science, Chinese Academy of Sciences, Nanjing 210008, China)

  • Xiaobing Chen

    (Key Laboratory of Coastal Environmental Processes and Ecological Restoration, Yantai Institute of Coastal Zone Research, Chinese Academy of Sciences, Yantai 264003, China)

  • Rongjiang Yao

    (State Key Laboratory of Soil and Sustainable Agriculture, Institute of Soil Science, Chinese Academy of Sciences, Nanjing 210008, China)

  • Yongming Luo

    (State Key Laboratory of Soil and Sustainable Agriculture, Institute of Soil Science, Chinese Academy of Sciences, Nanjing 210008, China)

  • Xiangping Wang

    (State Key Laboratory of Soil and Sustainable Agriculture, Institute of Soil Science, Chinese Academy of Sciences, Nanjing 210008, China)

  • Wenping Xie

    (State Key Laboratory of Soil and Sustainable Agriculture, Institute of Soil Science, Chinese Academy of Sciences, Nanjing 210008, China)

  • Dan Cao

    (Key Laboratory of Coastal Environmental Processes and Ecological Restoration, Yantai Institute of Coastal Zone Research, Chinese Academy of Sciences, Yantai 264003, China)

Abstract

Coastal salt-affected soils account for a large area all around the world. Soil salinity and pH are two important parameters affecting soil quality. Investigating the correlation of electrical conductivity (EC) and pH at different soil depths in saline soil was useful for quickly assessing the saline–alkaline characteristics. During the natural desalination process in the field area of reclaimed lands, the phenomena of pH increase and nitrogen accumulation may occur. A field sampling experiment was conducted in slightly saline soil affected by natural desalination and newly reclaimed heavily saline soil. A series of soil–water ratio extracts consisting of 1:2.5, 1:5, 1:10, 1:20, and 1:40 was designed to measure the EC and pH for simulating the saline–alkaline characteristics during the soil desalination process. Meanwhile, for reasonable utilization of the naturally ameliorated slightly saline soil which consists of a high content of nitrogen, a plastic mulching (PM) accompanied with nitrogen (N) fertilizer addition experiment in maize cultivation plots was designed. Results showed that a significant correlation of EC and/or pH existed in all ratios of soil extracts, and the slightly saline soil had a higher nitrogen content (1.06 g kg −1 ). The EC was negatively correlated with pH at a depth of 0~100 cm in the coastal saline soil, which indicated the increase of pH value and alkalization during its natural desalination. Furthermore, PM treatments showed no significant difference with N treatments in soil bulk density and soil water content in the slightly saline soil. The PM and N treatments obtained similar grain yield, which was between 6.2 and 6.5 t ha −1 . The soil salinity decreased in all treatments and the harvest index was largest in PM treated plots. Our study was beneficial for rapidly monitoring saline–alkaline characteristics and sustainable utilization of coastal saline soil resources. In addition, we should focus far more on pH improvement during the desalination process and rational utilization of chemical fertilizer for obtaining sustainable benefits in the coastal saline soil.

Suggested Citation

  • Yunpeng Sun & Xin Zhang & Jingtian Xian & Jingsong Yang & Xiaobing Chen & Rongjiang Yao & Yongming Luo & Xiangping Wang & Wenping Xie & Dan Cao, 2023. "Saline–Alkaline Characteristics during Desalination Process and Nitrogen Input Regulation in Reclaimed Tidal Flat Soils," Sustainability, MDPI, vol. 15(5), pages 1-13, March.
  • Handle: RePEc:gam:jsusta:v:15:y:2023:i:5:p:4378-:d:1084409
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2071-1050/15/5/4378/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2071-1050/15/5/4378/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Dong, Shide & Wan, Shuqin & Kang, Yaohu & Miao, Junxia & Li, Xiaobin, 2021. "Different mulching materials influence the reclamation of saline soil and growth of the Lycium barbarum L. under drip-irrigation in saline wasteland in northwest China," Agricultural Water Management, Elsevier, vol. 247(C).
    2. Xinping Chen & Zhenling Cui & Mingsheng Fan & Peter Vitousek & Ming Zhao & Wenqi Ma & Zhenlin Wang & Weijian Zhang & Xiaoyuan Yan & Jianchang Yang & Xiping Deng & Qiang Gao & Qiang Zhang & Shiwei Guo , 2014. "Producing more grain with lower environmental costs," Nature, Nature, vol. 514(7523), pages 486-489, October.
    3. Satoh, Yuhi & Kakiuchi, Hideki, 2021. "Calibration method to address influences of temperature and electrical conductivity for a low-cost soil water content sensor in the agricultural field," Agricultural Water Management, Elsevier, vol. 255(C).
    4. Yao, Rong-jiang & Yang, Jing-song & Zhang, Tong-juan & Hong, Li-zhou & Wang, Mao-wen & Yu, Shi-peng & Wang, Xiang-ping, 2014. "Studies on soil water and salt balances and scenarios simulation using SaltMod in a coastal reclaimed farming area of eastern China," Agricultural Water Management, Elsevier, vol. 131(C), pages 115-123.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Zhu, Wei & Yang, Jingsong & Yao, Rongjiang & Xie, Wenping & Wang, Xiangping & Liu, Yuqian, 2022. "Soil water-salt control and yield improvement under the effect of compound control in saline soil of the Yellow River Delta, China," Agricultural Water Management, Elsevier, vol. 263(C).
    2. Zhao, Rongqin & Liu, Ying & Tian, Mengmeng & Ding, Minglei & Cao, Lianhai & Zhang, Zhanping & Chuai, Xiaowei & Xiao, Liangang & Yao, Lunguang, 2018. "Impacts of water and land resources exploitation on agricultural carbon emissions: The water-land-energy-carbon nexus," Land Use Policy, Elsevier, vol. 72(C), pages 480-492.
    3. Wang, Linlin & Li, Lingling & Xie, Junhong & Luo, Zhuzhu & Sumera, Anwar & Zechariah, Effah & Fudjoe, Setor Kwami & Palta, Jairo A. & Chen, Yinglong, 2022. "Does plastic mulching reduce water footprint in field crops in China? A meta-analysis," Agricultural Water Management, Elsevier, vol. 260(C).
    4. Wang, Xiaolong & Chen, Yuanquan & Sui, Peng & Yan, Peng & Yang, Xiaolei & Gao, Wangsheng, 2017. "Preliminary analysis on economic and environmental consequences of grain production on different farm sizes in North China Plain," Agricultural Systems, Elsevier, vol. 153(C), pages 181-189.
    5. Liu, Lianhua & Ouyang, Wei & Wang, Yidi & Lian, Zhongmin & Pan, Junting & Liu, Hongbin & Chen, Jingrui & Niu, Shiwei, 2023. "Paddy water managements for diffuse nitrogen and phosphorus pollution control in China: A comprehensive review and emerging prospects," Agricultural Water Management, Elsevier, vol. 277(C).
    6. Feifei Pan & Sha Pan & Jiao Tang & Jingping Yuan & Huaixia Zhang & Bihua Chen, 2022. "Fertilization Practices: Optimization in Greenhouse Vegetable Cultivation with Different Planting Years," Sustainability, MDPI, vol. 14(13), pages 1-17, June.
    7. Diaz-Gonzalez, Freddy A. & Vuelvas, Jose. & Vallejo, Victoria E. & Patino, D., 2023. "Fertilization rate optimization model for potato crops to maximize yield while reducing polluting nitrogen emissions," Ecological Modelling, Elsevier, vol. 485(C).
    8. Rushan Chai & Lidong Huang & Lingling Li & Gerty Gielen & Hailong Wang & Yongsong Zhang, 2016. "Degradation of Tetracyclines in Pig Manure by Composting with Rice Straw," IJERPH, MDPI, vol. 13(3), pages 1-9, February.
    9. Tan, Lili & Feng, Puyu & Li, Baoguo & Huang, Feng & Liu, De Li & Ren, Pinpin & Liu, Haipeng & Srinivasan, Raghavan & Chen, Yong, 2022. "Climate change impacts on crop water productivity and net groundwater use under a double-cropping system with intensive irrigation in the Haihe River Basin, China," Agricultural Water Management, Elsevier, vol. 266(C).
    10. Bing Gao & Wei Huang & Xiaobo Xue & Yuanchao Hu & Yunfeng Huang & Lan Wang & Shengping Ding & Shenghui Cui, 2019. "Comprehensive Environmental Assessment of Potato as Staple Food Policy in China," IJERPH, MDPI, vol. 16(15), pages 1-19, July.
    11. Zhang, Yuehong & Li, Xianyue & Šimůnek, Jiří & Shi, Haibin & Chen, Ning & Hu, Qi, 2023. "Quantifying water and salt movement in a soil-plant system of a corn field using HYDRUS (2D/3D) and the stable isotope method," Agricultural Water Management, Elsevier, vol. 288(C).
    12. Zhang, Daojun & Yang, Wanjing & Kang, Dingrong & Zhang, Han, 2023. "Spatial-temporal characteristics and policy implication for non-grain production of cultivated land in Guanzhong Region," Land Use Policy, Elsevier, vol. 125(C).
    13. Bo Sun & Yongming Luo & Dianlin Yang & Jingsong Yang & Yuguo Zhao & Jiabao Zhang, 2023. "Coordinative Management of Soil Resources and Agricultural Farmland Environment for Food Security and Sustainable Development in China," IJERPH, MDPI, vol. 20(4), pages 1-16, February.
    14. Cai, Wenjing & Gu, Xiaobo & Du, Yadan & Chang, Tian & Lu, Shiyu & Zheng, Xiaobo & Bai, Dongping & Song, Hui & Sun, Shikun & Cai, Huanjie, 2022. "Effects of mulching on water saving, yield increase and emission reduction for maize in China," Agricultural Water Management, Elsevier, vol. 274(C).
    15. Xiao, Guangmin & Zhao, Zichao & Liang, Long & Meng, Fanqiao & Wu, Wenliang & Guo, Yanbin, 2019. "Improving nitrogen and water use efficiency in a wheat-maize rotation system in the North China Plain using optimized farming practices," Agricultural Water Management, Elsevier, vol. 212(C), pages 172-180.
    16. Xiaochuang Cao & Birong Qin & Qingxu Ma & Lianfeng Zhu & Chunquan Zhu & Yali Kong & Wenhao Tian & Qianyu Jin & Junhua Zhang & Yijun Yu, 2023. "Predicting the Nitrogen Quota Application Rate in a Double Rice Cropping System Based on Rice–Soil Nitrogen Balance and 15 N Labelling Analysis," Agriculture, MDPI, vol. 13(3), pages 1-17, March.
    17. Huang, Yajie & Ma, Yibing & Zhang, Shiwen & Li, Zhen & Huang, Yuanfang, 2021. "Optimum allocation of salt discharge areas in land consolidation for irrigation districts by SahysMod," Agricultural Water Management, Elsevier, vol. 256(C).
    18. Hao Li & Tiantian Li & Wei-Yew Chang, 2023. "Family Identity, Place Identity, and Chinese Farmers’ Environment-Friendly Production Behavior," Agriculture, MDPI, vol. 13(7), pages 1-15, June.
    19. Yang, Linsheng & Zhou, Yifan & Meng, Bo & Li, Haojie & Zhan, Jian & Xiong, Huaye & Zhao, Huanyu & Cong, Wenfeng & Wang, Xiaozhong & Zhang, Wushuai & Lakshmanan, Prakash & Deng, Yan & Shi, Xiaojun & Ch, 2022. "Reconciling productivity, profitability and sustainability of small-holder sugarcane farms: A combined life cycle and data envelopment analysis," Agricultural Systems, Elsevier, vol. 199(C).
    20. Muye Huang & Chuanhui Gu & Yanchao Bai, 2023. "Effect of Fertilization on Methane and Nitrous Oxide Emissions and Global Warming Potential on Agricultural Land in China: A Meta-Analysis," Agriculture, MDPI, vol. 14(1), pages 1-17, December.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jsusta:v:15:y:2023:i:5:p:4378-:d:1084409. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.