IDEAS home Printed from https://ideas.repec.org/a/gam/jsusta/v15y2023i4p3073-d1061570.html
   My bibliography  Save this article

Response of Vegetation Dynamics in the Three-North Region of China to Climate and Human Activities from 1982 to 2018

Author

Listed:
  • Weijia Liang

    (State Key Laboratory of Eco-Hydraulics in Northwest Arid Region, Xi’an University of Technology, Xi’an 710048, China)

  • Quan Quan

    (State Key Laboratory of Eco-Hydraulics in Northwest Arid Region, Xi’an University of Technology, Xi’an 710048, China)

  • Bohua Wu

    (State Key Laboratory of Eco-Hydraulics in Northwest Arid Region, Xi’an University of Technology, Xi’an 710048, China)

  • Shuhong Mo

    (State Key Laboratory of Eco-Hydraulics in Northwest Arid Region, Xi’an University of Technology, Xi’an 710048, China)

Abstract

To tackle ecological problems, many ecological restoration projects have been implemented in northern China. Identifying the drivers of vegetation change is critical for continued ecological engineering. In this study, three typical ecological reserves in the Three-North Shelter Forest Program Region (TNSFR) were selected to identify their vegetation development characteristics and driving mechanisms using the normalized difference vegetation index (NDVI), climate factors, and land use data. The results show that (1) NDVIs increased in the range of human activities of all of the three ecological reserves, indicating an obvious effect of the vegetation restoration projects. (2) In the planting period, vegetation restoration was mainly correlated with human activities. After entering the tending period, the impact of climate changes on vegetation dynamics was enhanced. (3) Temperature and precipitation provided approximate driving effects on vegetation dynamics in Region I, while vegetation dynamics in Regions II and III were more strongly correlated with precipitation. (4) The proportion of areas with ecological measures exceeded 50% in all three regions. In short, ecological projects in the three ecological reserves dominated the quantity of vegetation restoration, while climate changes influenced the quality of vegetation restoration.

Suggested Citation

  • Weijia Liang & Quan Quan & Bohua Wu & Shuhong Mo, 2023. "Response of Vegetation Dynamics in the Three-North Region of China to Climate and Human Activities from 1982 to 2018," Sustainability, MDPI, vol. 15(4), pages 1-17, February.
  • Handle: RePEc:gam:jsusta:v:15:y:2023:i:4:p:3073-:d:1061570
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2071-1050/15/4/3073/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2071-1050/15/4/3073/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Chao Li & Xuemei Li & Dongliang Luo & Yi He & Fangfang Chen & Bo Zhang & Qiyong Qin, 2021. "Spatiotemporal Pattern of Vegetation Ecology Quality and Its Response to Climate Change between 2000–2017 in China," Sustainability, MDPI, vol. 13(3), pages 1-22, January.
    2. Zheng, X. & Zhu, J.J. & Yan, Q.L. & Song, L.N., 2012. "Effects of land use changes on the groundwater table and the decline of Pinus sylvestris var. mongolica plantations in southern Horqin Sandy Land, Northeast China," Agricultural Water Management, Elsevier, vol. 109(C), pages 94-106.
    3. Ge Shi & Nan Jiang & Lianqiu Yao, 2018. "Land Use and Cover Change during the Rapid Economic Growth Period from 1990 to 2010: A Case Study of Shanghai," Sustainability, MDPI, vol. 10(2), pages 1-15, February.
    4. Qifei Zhang & Congjian Sun & Yaning Chen & Wei Chen & Yanyun Xiang & Jiao Li & Yuting Liu, 2022. "Recent Oasis Dynamics and Ecological Security in the Tarim River Basin, Central Asia," Sustainability, MDPI, vol. 14(6), pages 1-21, March.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Peng Chen & Rong Ma & Jiansheng Shi & Letian Si & Lefan Zhao & Jun Wu, 2023. "Ecological Risks Arising in the Regional Water Resources in Inner Mongolia Due to a Large-Scale Afforestation Project," Sustainability, MDPI, vol. 15(22), pages 1-15, November.
    2. Junling Zhang & Yifei Zhang, 2024. "Quantitative Assessment of the Impact of the Three-North Shelter Forest Program on Vegetation Net Primary Productivity over the Past Two Decades and Its Environmental Benefits in China," Sustainability, MDPI, vol. 16(9), pages 1-26, April.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Yunfeng Hu & Batu Nacun, 2018. "An Analysis of Land-Use Change and Grassland Degradation from a Policy Perspective in Inner Mongolia, China, 1990–2015," Sustainability, MDPI, vol. 10(11), pages 1-22, November.
    2. Ziyi Wang & Tingting Bai & Dong Xu & Juan Kang & Jian Shi & He Fang & Cong Nie & Zhijun Zhang & Peiwen Yan & Dingning Wang, 2022. "Temporal and Spatial Changes in Vegetation Ecological Quality and Driving Mechanism in Kökyar Project Area from 2000 to 2021," Sustainability, MDPI, vol. 14(13), pages 1-18, June.
    3. Hou, Chenli & Tian, Delong & Xu, Bing & Ren, Jie & Hao, Lei & Chen, Ning & Li, Xianyue, 2021. "Use of the stable oxygen isotope method to evaluate the difference in water consumption and utilization strategy between alfalfa and maize fields in an arid shallow groundwater area," Agricultural Water Management, Elsevier, vol. 256(C).
    4. Deng, Jifeng & Yao, Jiaqi & Zheng, Xiao & Gao, Guanglei, 2021. "Transpiration and canopy stomatal conductance dynamics of Mongolian pine plantations in semiarid deserts, Northern China," Agricultural Water Management, Elsevier, vol. 249(C).
    5. Wen Chen & Jinjie Wang & Jianli Ding & Xiangyu Ge & Lijing Han & Shaofeng Qin, 2023. "Detecting Long-Term Series Eco-Environmental Quality Changes and Driving Factors Using the Remote Sensing Ecological Index with Salinity Adaptability (RSEI SI ): A Case Study in the Tarim River Basin,," Land, MDPI, vol. 12(7), pages 1-23, June.
    6. Chan Lu & Lei Shi & Lihua Fu & Simian Liu & Jianqiao Li & Zhenchun Mo, 2023. "Urban Ecological Environment Quality Evaluation and Territorial Spatial Planning Response: Application to Changsha, Central China," IJERPH, MDPI, vol. 20(4), pages 1-20, February.
    7. Ji Zhang & Pei Zhang & Xinchen Gu & Mingjiang Deng & Xiaoying Lai & Aihua Long & Xiaoya Deng, 2023. "Analysis of Spatio-Temporal Pattern Changes and Driving Forces of Xinjiang Plain Oases Based on Geodetector," Land, MDPI, vol. 12(8), pages 1-15, July.
    8. Yanzhuo Liu & Shanshan Song & Chunjuan Bi & Junli Zhao & Di Xi & Ziqi Su, 2019. "Occurrence, Distribution and Risk Assessment of Mercury in Multimedia of Soil-Dust-Plants in Shanghai, China," IJERPH, MDPI, vol. 16(17), pages 1-19, August.
    9. Song, Lining & Zhu, Jiaojun & Zhang, Ting & Wang, Kai & Wang, Guochen & Liu, Jianhua, 2021. "Higher canopy transpiration rates induced dieback in poplar (Populus × xiaozhuanica) plantations in a semiarid sandy region of Northeast China," Agricultural Water Management, Elsevier, vol. 243(C).
    10. Deng, Jianqiang & Zhang, Zhixin & Liang, Zhiting & Li, Zhou & Yang, Xianlong & Wang, Zikui & Coulter, Jeffrey A. & Shen, Yuying, 2020. "Replacing summer fallow with annual forage improves crude protein productivity and water use efficiency of the summer fallow-winter wheat cropping system," Agricultural Water Management, Elsevier, vol. 230(C).
    11. Chunying Ning & Rajan Subedi & Lu Hao, 2023. "Land Use/Cover Change, Fragmentation, and Driving Factors in Nepal in the Last 25 Years," Sustainability, MDPI, vol. 15(8), pages 1-19, April.
    12. Roestamy, Martin & Martin, Abraham Yazdi & Rusli, Radif Khotamir & Fulazzaky, Mohamad Ali, 2022. "A review of the reliability of land bank institution in Indonesia for effective land management of public interest," Land Use Policy, Elsevier, vol. 120(C).
    13. Qifei Zhang & Yaning Chen & Zhi Li & Congjian Sun & Yanyun Xiang & Zhihui Liu, 2023. "Spatio-Temporal Development of Vegetation Carbon Sinks and Sources in the Arid Region of Northwest China," IJERPH, MDPI, vol. 20(4), pages 1-23, February.
    14. Li, Maona & Zhang, Yunlong & Ma, Chizhen & Sun, Hongren & Ren, Wei & Wang, Xianguo, 2023. "Maximizing the water productivity and economic returns of alfalfa by deficit irrigation in China: A meta-analysis," Agricultural Water Management, Elsevier, vol. 287(C).
    15. Yu Xiao & Gaodi Xie & Chunxia Lu & Changshun Zhang & Jie Xu & Jingya Liu & Keyu Qin & Yiqiu Li & Chaoxuan Xu & Caixia Zhang & Yangyang Wang & Shuang Gan & Jia Liu & Liqiang Ge, 2021. "Suggestions for Revegetation over the Next 30 Years Based on Precipitation in the Three North Region of China," Sustainability, MDPI, vol. 13(22), pages 1-18, November.
    16. Song, Lining & Zhu, Jiaojun & Zheng, Xiao & Li, Xinjunyan & Wang, Kai & Zhang, Jinxin & Wang, Guochen & Sun, Haihong, 2023. "Water use dynamics of trees in a Pinus tabuliformis plantation in semiarid sandy regions, Northeast China," Agricultural Water Management, Elsevier, vol. 275(C).
    17. Zheng, Xiao & Zhu, Jiaojun & Xing, Zefeng, 2016. "Assessment of the effects of shelterbelts on crop yields at the regional scale in Northeast China," Agricultural Systems, Elsevier, vol. 143(C), pages 49-60.
    18. Xiuyan Zhao & Changhong Miao, 2022. "Spatial-Temporal Changes and Simulation of Land Use in Metropolitan Areas: A Case of the Zhengzhou Metropolitan Area, China," IJERPH, MDPI, vol. 19(21), pages 1-27, October.
    19. Wang, Linlin & Xie, Junhong & Luo, Zhuzhu & Niu, Yining & Coulter, Jeffrey A. & Zhang, Renzhi & Lingling, Li, 2021. "Forage yield, water use efficiency, and soil fertility response to alfalfa growing age in the semiarid Loess Plateau of China," Agricultural Water Management, Elsevier, vol. 243(C).
    20. Bo Wen & Yunhua Pan & Yanyuan Zhang & Jingjie Liu & Min Xia, 2018. "Does the Exhaustion of Resources Drive Land Use Changes? Evidence from the Influence of Coal Resources-Exhaustion on Coal Resources–Based Industry Land Use Changes," Sustainability, MDPI, vol. 10(8), pages 1-13, August.

    More about this item

    Keywords

    ;
    ;
    ;
    ;
    ;

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jsusta:v:15:y:2023:i:4:p:3073-:d:1061570. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.