IDEAS home Printed from https://ideas.repec.org/a/gam/jsusta/v15y2023i3p2773-d1056742.html
   My bibliography  Save this article

Assessment of Agricultural Drought Vulnerability with Focus on Upland Fields and Identification of Primary Management Areas

Author

Listed:
  • Hyungjin Shin

    (Rural Research Institute, Korea Rural Community Corporation, Naju 58327, Republic of Korea)

  • Gyumin Lee

    (Water Resources Systems Laboratory, Kyung Hee University, Yongin 17104, Republic of Korea)

  • Jaenam Lee

    (Rural Research Institute, Korea Rural Community Corporation, Naju 58327, Republic of Korea)

  • Sehoon Kim

    (Department of Civil, Environmental and Plant Engineering, Konkuk University, Seoul 05029, Republic of Korea)

  • Inhong Song

    (Department of Rural Systems Engineering, Research Institute of Agriculture and Life Sciences, Seoul National University, Seoul 08826, Republic of Korea)

Abstract

Robust water management systems are crucial for sustainable water use, particularly considering rapidly changing, ever-improving water supply system technologies. However, the establishment of specific management standards in upland fields is challenging, as several types of crops are cultivated in upland fields. Hence, the timing and required amount of water vary greatly, further rendering drought response challenging. In this study, we evaluated the agricultural drought vulnerability of South Korean upland fields, considering the lack of water resources, to establish preliminary drought damage prevention measures. The Technique for Order of Preference method was used for the drought vulnerability assessment, and the assessment indicators used were annual rainfall, number of dry days, upland field area, available soil water capacity, and groundwater usage. The 20 areas of highest vulnerability comprised large cultivation areas with minimal subsurface-water usage, except for areas where the number of dry days appeared to be the major factor for drought vulnerability. Damage caused by recurring droughts accumulated over time; thus, upland-field-oriented management may be required and can even be used in cases where insufficient drought information is available. Future studies can use the proposed method while considering assessment factors that describe upland field conditions.

Suggested Citation

  • Hyungjin Shin & Gyumin Lee & Jaenam Lee & Sehoon Kim & Inhong Song, 2023. "Assessment of Agricultural Drought Vulnerability with Focus on Upland Fields and Identification of Primary Management Areas," Sustainability, MDPI, vol. 15(3), pages 1-16, February.
  • Handle: RePEc:gam:jsusta:v:15:y:2023:i:3:p:2773-:d:1056742
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2071-1050/15/3/2773/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2071-1050/15/3/2773/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Wolters, W. T. M. & Mareschal, B., 1995. "Novel types of sensitivity analysis for additive MCDM methods," European Journal of Operational Research, Elsevier, vol. 81(2), pages 281-290, March.
    2. Kim, Gyutai & Park, Chan S. & Yoon, K. Paul, 1997. "Identifying investment opportunities for advanced manufacturing systems with comparative-integrated performance measurement," International Journal of Production Economics, Elsevier, vol. 50(1), pages 23-33, May.
    3. Feng, Cheng-Min & Wang, Rong-Tsu, 2000. "Performance evaluation for airlines including the consideration of financial ratios," Journal of Air Transport Management, Elsevier, vol. 6(3), pages 133-142.
    4. Rockström,Johan & Falkenmark,Malin & Folke,Carl & Lannerstad,Mats & Barron,Jennie & Enfors,Elin, 2014. "Water Resilience for Human Prosperity," Cambridge Books, Cambridge University Press, number 9781107024199.
    5. Edward A. Byers & Gemma Coxon & Jim Freer & Jim W. Hall, 2020. "Drought and climate change impacts on cooling water shortages and electricity prices in Great Britain," Nature Communications, Nature, vol. 11(1), pages 1-12, December.
    6. Larichev, O. I. & Moshkovich, H. M., 1995. "ZAPROS-LM -- A method and system for ordering multiattribute alternatives," European Journal of Operational Research, Elsevier, vol. 82(3), pages 503-521, May.
    7. Shamsuddin Shahid & Houshang Behrawan, 2008. "Drought risk assessment in the western part of Bangladesh," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 46(3), pages 391-413, September.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Rajesh Kr. Singh & Angappa Gunasekaran & Pravin Kumar, 2018. "Third party logistics (3PL) selection for cold chain management: a fuzzy AHP and fuzzy TOPSIS approach," Annals of Operations Research, Springer, vol. 267(1), pages 531-553, August.
    2. Mahmut BAKIR & Şahap AKAN & Kasım KIRACI & Darjan KARABASEVIC & Dragisa STANUJKIC & Gabrijela POPOVIC, 2020. "Multiple-Criteria Approach of the Operational Performance Evaluation in the Airline Industry: Evidence from the Emerging Markets," Journal for Economic Forecasting, Institute for Economic Forecasting, vol. 0(2), pages 149-172, July.
    3. Corrente, Salvatore & Figueira, José Rui & Greco, Salvatore, 2014. "The SMAA-PROMETHEE method," European Journal of Operational Research, Elsevier, vol. 239(2), pages 514-522.
    4. Md Abdullah Salman & Faisal Ahmed, 2020. "Climatology In Barishal, Bangladesh: A Historical Analysis Of Temperature, Rainfall, Wind Speed And Relative Humidity Data," Malaysian Journal of Geosciences (MJG), Zibeline International Publishing, vol. 4(1), pages 43-53, September.
    5. Gaurav Khatwani & Gopal Das, 2016. "Evaluating combination of individual pre-purchase internet information channels using hybrid fuzzy MCDM technique: demographics as moderators," International Journal of Indian Culture and Business Management, Inderscience Enterprises Ltd, vol. 12(1), pages 28-49.
    6. Mondol, Md Anarul Haque & Zhu, Xuan & Dunkerley, David & Henley, Benjamin J., 2021. "Observed meteorological drought trends in Bangladesh identified with the Effective Drought Index (EDI)," Agricultural Water Management, Elsevier, vol. 255(C).
    7. Jing-Li Fan & Zezheng Li & Xi Huang & Kai Li & Xian Zhang & Xi Lu & Jianzhong Wu & Klaus Hubacek & Bo Shen, 2023. "A net-zero emissions strategy for China’s power sector using carbon-capture utilization and storage," Nature Communications, Nature, vol. 14(1), pages 1-16, December.
    8. Francis, Graham & Humphreys, Ian & Fry, Jackie, 2005. "The nature and prevalence of the use of performance measurement techniques by airlines," Journal of Air Transport Management, Elsevier, vol. 11(4), pages 207-217.
    9. Dorota Górecka, 2012. "Applying Multi-Criteria Decision Aiding techniques in the process of project management within the wedding planning business," Operations Research and Decisions, Wroclaw University of Science and Technology, Faculty of Management, vol. 22(4), pages 41-67.
    10. Golam Saleh Ahmed Salem & So Kazama & Shamsuddin Shahid & Nepal C. Dey, 2018. "Groundwater-dependent irrigation costs and benefits for adaptation to global change," Mitigation and Adaptation Strategies for Global Change, Springer, vol. 23(6), pages 953-979, August.
    11. Almoghathawi, Yasser & Barker, Kash & Rocco, Claudio M. & Nicholson, Charles D., 2017. "A multi-criteria decision analysis approach for importance identification and ranking of network components," Reliability Engineering and System Safety, Elsevier, vol. 158(C), pages 142-151.
    12. Vladimir Marković & Imre Nagy & Andras Sik & Kinga Perge & Peter Laszlo & Maria Papathoma-Köhle & Catrin Promper & Thomas Glade, 2016. "Assessing drought and drought-related wildfire risk in Kanjiza, Serbia: the SEERISK methodology," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 80(2), pages 709-726, January.
    13. A. S. Giannikopoulou & F. K. Gad & E. Kampragou & D. Assimacopoulos, 2017. "Risk-Based Assessment of Drought Mitigation Options: the Case of Syros Island, Greece," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 31(2), pages 655-669, January.
    14. P P Sutton & R H Green, 2007. "Choice is a value statement. On inferring optimal multiple attribute portfolios from non-optimal nominations," Journal of the Operational Research Society, Palgrave Macmillan;The OR Society, vol. 58(11), pages 1526-1533, November.
    15. Jing Wang & Feng Fang & Qiang Zhang & Jinsong Wang & Yubi Yao & Wei Wang, 2016. "Risk evaluation of agricultural disaster impacts on food production in southern China by probability density method," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 83(3), pages 1605-1634, September.
    16. Chen Jo-Hui & Diaz John Francis T., 2021. "Application of grey relational analysis and artificial neural networks on currency exchange-traded notes (ETNs)," Studies in Nonlinear Dynamics & Econometrics, De Gruyter, vol. 25(2), pages 1-17, April.
    17. Prabhat Kumar & Puneet Tandon, 2019. "A paradigm for customer-driven product design approach using extended axiomatic design," Journal of Intelligent Manufacturing, Springer, vol. 30(2), pages 589-603, February.
    18. Rihab Khemiri & Khaoula Elbedoui-Maktouf & Bernard Grabot & Belhassen Zouari, 2017. "A fuzzy multi-criteria decision making approach for managing performance and risk in integrated procurement-production planning," Post-Print hal-01758604, HAL.
    19. Thanh Ngo & Kan Wai Hong Tsui, 2022. "Estimating the confidence intervals for DEA efficiency scores of Asia-Pacific airlines," Operational Research, Springer, vol. 22(4), pages 3411-3434, September.
    20. Ringuest, Jeffrey L., 1997. "LP-metric sensitivity analysis for single and multi-attribute decision analysis," European Journal of Operational Research, Elsevier, vol. 98(3), pages 563-570, May.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jsusta:v:15:y:2023:i:3:p:2773-:d:1056742. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.