IDEAS home Printed from https://ideas.repec.org/a/gam/jsusta/v15y2023i3p2556-d1052755.html
   My bibliography  Save this article

Effects of Organic Fertilizer Supply on Soil Properties, Tomato Yield, and Fruit Quality: A Global Meta-Analysis

Author

Listed:
  • Heling Fan

    (College of Tropical Crops, Hainan University, Haikou 570228, China)

  • Yanshu Zhang

    (College of Tropical Crops, Hainan University, Haikou 570228, China)

  • Jingchen Li

    (College of Tropical Crops, Hainan University, Haikou 570228, China)

  • Jiajun Jiang

    (College of Tropical Crops, Hainan University, Haikou 570228, China)

  • Abdul Waheed

    (College of Tropical Crops, Hainan University, Haikou 570228, China)

  • Shuguang Wang

    (College of Tropical Crops, Hainan University, Haikou 570228, China)

  • Syed Majid Rasheed

    (Department of Agriculture, Bacha Khan University, Charsadda 24540, Pakistan)

  • Li Zhang

    (College of Tropical Crops, Hainan University, Haikou 570228, China)

  • Rongping Zhang

    (College of Tropical Crops, Hainan University, Haikou 570228, China)

Abstract

The increased use of chemical fertilizer input in agricultural production and the promotion of sustainable agriculture encourage researchers around the globe to undertake experiments regarding application of organic fertilizers on tomato production. This study aims to amalgamate the comprehensive effects of organic fertilizer application compared with the pure application of chemical fertilizers (100% CF) on soil properties, tomato yield, and fruit quality through meta-analysis. It helps to provide a certain reference for the sustainable development of circular agriculture systems in tomato planting. Articles related to the impact of organic fertilizers on tomato planting were searched on the Web of Science, Science direct, and Google Scholar. A total of 124 documents meeting the Meta-analysis criteria were screened out. A total of 2041 sets of data were screened for soil properties (electrical conductivity, pH, organic matter, total nitrogen, total phosphorus, total potassium, ammonium nitrogen, nitrate nitrogen, available phosphorus, available potassium, bacteria, fungi, urease, catalase) and tomato yield and quality (nitrate, sugar, lycopene, protein). The normal fitting of the response ratio of each data revealed that all of them satisfied the Gaussian curve, and there was no publication bias. The application of organic fertilizers (the total) compared with 100% CF can increase the yield by 3.48%, acidic soil by (pH < 6) 7.98%, neutral soil by (pH = 6~8) 3.35%, soil organic matter by 24.43%, total nitrogen by 32.79%, total phosphorus by 23.97%, total potassium by 44.91%, available phosphorus by 14.46%, available potassium by 16.21%, soil bacteria by 5.94%, urease by 22.32%, and catalase by 17.68%. The application of organic fertilizers (the total) had no significant effect on ammonium nitrogen, nitrate nitrogen, and soil fungi in the soil. After the subgroup analysis, bio-organic fertilizers (BF) can increase tomato yield by 14.15%, reduce soil electrical conductivity by 13.66%, and increase soil catalase activity by 24.55%. Ordinary organic fertilizer (OF) can improve tomato quality, reduce tomato nitrate by 13.02%, and increase sugar by 10.66%, lycopene by 10.78%, total nitrogen by 39.55%, total phosphorus by 29.11%, total potassium by 58.67%, soil bacteria by 6.54%, and urease by 25.41%. Both can increase tomato protein, soil pH, soil available phosphorus, and potassium, but neither can significantly affect the ammonium nitrogen, nitrate nitrogen, and soil fungi in the soil. Correlation analysis revealed a significant positive correlation of tomato yield with lycopene, soil electricity conductivity, organic matter, ammonium nitrogen, nitrate nitrogen, available phosphorus, and urease. The application of organic fertilizers can improve tomato yield and quality and soil properties more compared with 100% CF. BF have better effects on yield and soil electrical conductivity, whereas tomato quality and soil physical and chemical properties are more effected by OF. Hence, this study provides a pathway for the selection of organic fertilizer in tomato production.

Suggested Citation

  • Heling Fan & Yanshu Zhang & Jingchen Li & Jiajun Jiang & Abdul Waheed & Shuguang Wang & Syed Majid Rasheed & Li Zhang & Rongping Zhang, 2023. "Effects of Organic Fertilizer Supply on Soil Properties, Tomato Yield, and Fruit Quality: A Global Meta-Analysis," Sustainability, MDPI, vol. 15(3), pages 1-18, January.
  • Handle: RePEc:gam:jsusta:v:15:y:2023:i:3:p:2556-:d:1052755
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2071-1050/15/3/2556/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2071-1050/15/3/2556/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Thompson, R.B. & Martinez-Gaitan, C. & Gallardo, M. & Gimenez, C. & Fernandez, M.D., 2007. "Identification of irrigation and N management practices that contribute to nitrate leaching loss from an intensive vegetable production system by use of a comprehensive survey," Agricultural Water Management, Elsevier, vol. 89(3), pages 261-274, May.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Vladimir Ivanovich Trukhachev & Sergey Leonidovich Belopukhov & Marina Grigoryeva & Inna Ivanovna Dmitrevskaya, 2024. "Study of the Sustainability of Ecological and Chemical Indicators of Soils in Organic Farming," Sustainability, MDPI, vol. 16(2), pages 1-18, January.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Gallardo, M. & Giménez, C. & Martínez-Gaitán, C. & Stöckle, C.O. & Thompson, R.B. & Granados, M.R., 2011. "Evaluation of the VegSyst model with muskmelon to simulate crop growth, nitrogen uptake and evapotranspiration," Agricultural Water Management, Elsevier, vol. 101(1), pages 107-117.
    2. Gallardo, M. & Thompson, R.B. & Rodríguez, J.S. & Rodríguez, F. & Fernández, M.D. & Sánchez, J.A. & Magán, J.J., 2009. "Simulation of transpiration, drainage, N uptake, nitrate leaching, and N uptake concentration in tomato grown in open substrate," Agricultural Water Management, Elsevier, vol. 96(12), pages 1773-1784, December.
    3. Grewal, Harsharn S. & Maheshwari, Basant & Parks, Sophie E., 2011. "Water and nutrient use efficiency of a low-cost hydroponic greenhouse for a cucumber crop: An Australian case study," Agricultural Water Management, Elsevier, vol. 98(5), pages 841-846, March.
    4. Antonio J. Castro & María D. López-Rodríguez & Cynthia Giagnocavo & Miguel Gimenez & Leticia Céspedes & Abel La Calle & Marisa Gallardo & Pablo Pumares & Javier Cabello & Estefanía Rodríguez & David U, 2019. "Six Collective Challenges for Sustainability of Almería Greenhouse Horticulture," IJERPH, MDPI, vol. 16(21), pages 1-23, October.
    5. Li, Shengping & Tan, Deshui & Wu, Xueping & Degré, Aurore & Long, Huaiyu & Zhang, Shuxiang & Lu, Jinjing & Gao, Lili & Zheng, Fengjun & Liu, Xiaotong & Liang, Guopeng, 2021. "Negative pressure irrigation increases vegetable water productivity and nitrogen use efficiency by improving soil water and NO3–-N distributions," Agricultural Water Management, Elsevier, vol. 251(C).
    6. Yasuor, Hagai & Yermiyahu, Uri & Ben-Gal, Alon, 2020. "Consequences of irrigation and fertigation of vegetable crops with variable quality water: Israel as a case study," Agricultural Water Management, Elsevier, vol. 242(C).
    7. Bonachela, Santiago & Fernández, María Dolores & Cabrera, Francisco Javier & Granados, María Rosa, 2018. "Soil spatio-temporal distribution of water, salts and nutrients in greenhouse, drip-irrigated tomato crops using lysimetry and dielectric methods," Agricultural Water Management, Elsevier, vol. 203(C), pages 151-161.
    8. Li, Jungai & Liu, Hongbin & Wang, Hongyuan & Luo, Jiafa & Zhang, Xuejun & Liu, Zhaohui & Zhang, Yitao & Zhai, Limei & Lei, Qiuliang & Ren, Tianzhi & Li, Yan & Bashir, Muhammad Amjad, 2018. "Managing irrigation and fertilization for the sustainable cultivation of greenhouse vegetables," Agricultural Water Management, Elsevier, vol. 210(C), pages 354-363.
    9. Contreras, J.I. & Alonso, F. & Cánovas, G. & Baeza, R., 2017. "Irrigation management of greenhouse zucchini with different soil matric potential level. Agronomic and environmental effects," Agricultural Water Management, Elsevier, vol. 183(C), pages 26-34.
    10. Arbat, G. & Roselló, A. & Domingo Olivé, F. & Puig-Bargués, J. & González Llinàs, E. & Duran-Ros, M. & Pujol, J. & Ramírez de Cartagena, F., 2013. "Soil water and nitrate distribution under drip irrigated corn receiving pig slurry," Agricultural Water Management, Elsevier, vol. 120(C), pages 11-22.
    11. Soto, F. & Gallardo, M. & Giménez, C. & Peña-Fleitas, T. & Thompson, R.B., 2014. "Simulation of tomato growth, water and N dynamics using the EU-Rotate_N model in Mediterranean greenhouses with drip irrigation and fertigation," Agricultural Water Management, Elsevier, vol. 132(C), pages 46-59.
    12. Suárez-Rey, E.M. & Romero-Gámez, M. & Giménez, C. & Thompson, R.B. & Gallardo, M., 2016. "Use of EU-Rotate_N and CropSyst models to predict yield, growth and water and N dynamics of fertigated leafy vegetables in a Mediterranean climate and to determine N fertilizer requirements," Agricultural Systems, Elsevier, vol. 149(C), pages 150-164.
    13. Mar Carreras-Sempere & Rafaela Caceres & Marc Viñas & Carmen Biel, 2021. "Use of Recovered Struvite and Ammonium Nitrate in Fertigation in Tomato ( Lycopersicum esculentum ) Production for boosting Circular and Sustainable Horticulture," Agriculture, MDPI, vol. 11(11), pages 1-15, October.
    14. Libutti, Angela & Monteleone, Massimo, 2017. "Soil vs. groundwater: The quality dilemma. Managing nitrogen leaching and salinity control under irrigated agriculture in Mediterranean conditions," Agricultural Water Management, Elsevier, vol. 186(C), pages 40-50.
    15. Bonachela, Santiago & Fernández, María Dolores & Cabrera-Corral, Francisco Javier & Granados, María Rosa, 2022. "Salt and irrigation management of soil-grown Mediterranean greenhouse tomato crops drip-irrigated with moderately saline water," Agricultural Water Management, Elsevier, vol. 262(C).
    16. Benjamin Ruch & Margita Hefner & André Sradnick, 2023. "Excessive Nitrate Limits the Sustainability of Deep Compost Mulch in Organic Market Gardening," Agriculture, MDPI, vol. 13(5), pages 1-13, May.
    17. Thompson, R.B. & Gallardo, M. & Valdez, L.C. & Fernandez, M.D., 2007. "Determination of lower limits for irrigation management using in situ assessments of apparent crop water uptake made with volumetric soil water content sensors," Agricultural Water Management, Elsevier, vol. 92(1-2), pages 13-28, August.
    18. Padilla, Francisco M. & Farneselli, Michela & Gianquinto, Giorgio & Tei, Francesco & Thompson, Rodney B., 2020. "Monitoring nitrogen status of vegetable crops and soils for optimal nitrogen management," Agricultural Water Management, Elsevier, vol. 241(C).
    19. Giménez, C. & Thompson, R.B. & Prieto, M.H. & Suárez-Rey, E. & Padilla, F.M. & Gallardo, M., 2019. "Adaptation of the VegSyst model to outdoor conditions for leafy vegetables and processing tomato," Agricultural Systems, Elsevier, vol. 171(C), pages 51-64.
    20. Gao, Riping & Pan, Zhihua & Zhang, Jun & Chen, Xiao & Qi, Yinglong & Zhang, Ziyuan & Chen, Shaoqing & Jiang, Kang & Ma, Shangqian & Wang, Jialin & Huang, Zhefan & Cai, Linlin & Wu, Yao & Guo, Ning & X, 2023. "Optimal cooperative application solutions of irrigation and nitrogen fertilization for high crop yield and friendly environment in the semi-arid region of North China," Agricultural Water Management, Elsevier, vol. 283(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jsusta:v:15:y:2023:i:3:p:2556-:d:1052755. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.