IDEAS home Printed from https://ideas.repec.org/a/eee/agiwat/v186y2017icp40-50.html
   My bibliography  Save this article

Soil vs. groundwater: The quality dilemma. Managing nitrogen leaching and salinity control under irrigated agriculture in Mediterranean conditions

Author

Listed:
  • Libutti, Angela
  • Monteleone, Massimo

Abstract

A 3-year field trial was carried out in southern Italy on an agricultural farm close to the seacoast of Manfredonia Gulf (Apulia Region) where crop irrigation with saline water is standard practice. Seawater intrusion into the groundwater, and the consequent soil salinization represent a serious environmental threat. Each year, two crop cycles were applied, in spring-summer and autumn-winter seasons, respectively. The crop pairing over the three years was tomato and spinach; zucchini and broccoli; pepper and wheat. Cultivation was performed in a field-unit characterised by three adjacent plots. At the centre of each plot, a hydraulically insulated drainage basin was dug (0.70m depth) to collect the draining water. The crops were irrigated with saline water and leaching treatments were applied with saline or fresh water whenever soil salinity reached a predetermined electrical conductivity threshold. Since soil salinity control might increase nitrate leaching, operational criteria should optimize the trade-off between the application of higher water volumes to reduce soil salinity and lower water volumes to protect groundwater quality from nitrate leaching. The amount of nitrogen leached from the soil root-zone was considerable (on average, 156kgNha−1year−1) and higher in autumn-winter than spring-summer (72 vs. 28% of the average annual value). In autumn-winter season, nitrogen losses were mainly due to plentiful nitrogen fertilisation and high rainfall. In spring–summer, extra irrigations promoted salt leaching together with nitrogen losses. To manage both irrigation and nitrogen fertilisation a “decoupling” strategy is recommended. This strategy suggests applying leaching preferably at the end of the spring-summer growing season, soon after crop harvesting or at the beginning of the autumn-winter season, before second crop cycle starting. In autumn-winter season, proper nitrogen supplies and timely top-dressing applications, still allow salts to be discharged by rainfalls but prevent nitrogen losses, thus preserving groundwater quality.

Suggested Citation

  • Libutti, Angela & Monteleone, Massimo, 2017. "Soil vs. groundwater: The quality dilemma. Managing nitrogen leaching and salinity control under irrigated agriculture in Mediterranean conditions," Agricultural Water Management, Elsevier, vol. 186(C), pages 40-50.
  • Handle: RePEc:eee:agiwat:v:186:y:2017:i:c:p:40-50
    DOI: 10.1016/j.agwat.2017.02.019
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0378377417300720
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.agwat.2017.02.019?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Asadi, Mohammad Esmaeil & Clemente, Roberto S. & Gupta, Ashim Das & Loof, Rainer & Hansen, Gunner K., 2002. "Impacts of fertigation via sprinkler irrigation on nitrate leaching and corn yield in an acid-sulphate soil in Thailand," Agricultural Water Management, Elsevier, vol. 52(3), pages 197-213, January.
    2. Poch-Massegú, R. & Jiménez-Martínez, J. & Wallis, K.J. & Ramírez de Cartagena, F. & Candela, L., 2014. "Irrigation return flow and nitrate leaching under different crops and irrigation methods in Western Mediterranean weather conditions," Agricultural Water Management, Elsevier, vol. 134(C), pages 1-13.
    3. Gheysari, Mahdi & Mirlatifi, Seyed Majid & Homaee, Mehdi & Asadi, Mohammad Esmaeil & Hoogenboom, Gerrit, 2009. "Nitrate leaching in a silage maize field under different irrigation and nitrogen fertilizer rates," Agricultural Water Management, Elsevier, vol. 96(6), pages 946-954, June.
    4. Wang, Ruoshui & Kang, Yaohu & Wan, Shuqin & Hu, Wei & Liu, Shiping & Liu, Shuhui, 2011. "Salt distribution and the growth of cotton under different drip irrigation regimes in a saline area," Agricultural Water Management, Elsevier, vol. 100(1), pages 58-69.
    5. Oyarzun, Ricardo & Arumi, Jose & Salgado, Luis & Marino, Miguel, 2007. "Sensitivity analysis and field testing of the RISK-N model in the Central Valley of Chile," Agricultural Water Management, Elsevier, vol. 87(3), pages 251-260, February.
    6. Tedeschi, A. & Dell'Aquila, R., 2005. "Effects of irrigation with saline waters, at different concentrations, on soil physical and chemical characteristics," Agricultural Water Management, Elsevier, vol. 77(1-3), pages 308-322, August.
    7. Wang, Zhen & Li, Jiusheng & Li, Yanfeng, 2014. "Simulation of nitrate leaching under varying drip system uniformities and precipitation patterns during the growing season of maize in the North China Plain," Agricultural Water Management, Elsevier, vol. 142(C), pages 19-28.
    8. Chowdary, V.M. & Rao, N.H. & Sarma, P.B.S., 2005. "Decision support framework for assessment of non-point-source pollution of groundwater in large irrigation projects," Agricultural Water Management, Elsevier, vol. 75(3), pages 194-225, July.
    9. Feng, Zhao-Zhong & Wang, Xiao-Ke & Feng, Zong-Wei, 2005. "Soil N and salinity leaching after the autumn irrigation and its impact on groundwater in Hetao Irrigation District, China," Agricultural Water Management, Elsevier, vol. 71(2), pages 131-143, February.
    10. Verma, A.K. & Gupta, S.K. & Isaac, R.K., 2012. "Use of saline water for irrigation in monsoon climate and deep water table regions: Simulation modeling with SWAP," Agricultural Water Management, Elsevier, vol. 115(C), pages 186-193.
    11. Jia, Xucun & Shao, Lijie & Liu, Peng & Zhao, Bingqiang & Gu, Limin & Dong, Shuting & Bing, So Hwat & Zhang, Jiwang & Zhao, Bin, 2014. "Effect of different nitrogen and irrigation treatments on yield and nitrate leaching of summer maize (Zea mays L.) under lysimeter conditions," Agricultural Water Management, Elsevier, vol. 137(C), pages 92-103.
    12. Ibrikci, Hayriye & Cetin, Mahmut & Karnez, Ebru & Flügel, Wolfgang Albert & Tilkici, Burak & Bulbul, Yunus & Ryan, John, 2015. "Irrigation-induced nitrate losses assessed in a Mediterranean irrigation district," Agricultural Water Management, Elsevier, vol. 148(C), pages 223-231.
    13. Rajput, T.B.S. & Patel, Neelam, 2006. "Water and nitrate movement in drip-irrigated onion under fertigation and irrigation treatments," Agricultural Water Management, Elsevier, vol. 79(3), pages 293-311, February.
    14. Thompson, R.B. & Martinez-Gaitan, C. & Gallardo, M. & Gimenez, C. & Fernandez, M.D., 2007. "Identification of irrigation and N management practices that contribute to nitrate leaching loss from an intensive vegetable production system by use of a comprehensive survey," Agricultural Water Management, Elsevier, vol. 89(3), pages 261-274, May.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Pedrero, Francisco & Grattan, S.R. & Ben-Gal, Alon & Vivaldi, Gaetano Alessandro, 2020. "Opportunities for expanding the use of wastewaters for irrigation of olives," Agricultural Water Management, Elsevier, vol. 241(C).
    2. Minhas, P.S. & Ramos, Tiago B. & Ben-Gal, Alon & Pereira, Luis S., 2020. "Coping with salinity in irrigated agriculture: Crop evapotranspiration and water management issues," Agricultural Water Management, Elsevier, vol. 227(C).
    3. Shareef, Muhammad & Gui, Dongwei & Zeng, Fanjiang & Waqas, Muhammad & Ahmed, Zeeshan & Zhang, Bo & Iqbal, Hassan & Xue, Jie, 2019. "Nitrogen leaching, recovery efficiency, and cotton productivity assessments on desert-sandy soil under various application methods," Agricultural Water Management, Elsevier, vol. 223(C), pages 1-1.
    4. Libutti, Angela & Gatta, Giuseppe & Gagliardi, Anna & Vergine, Pompilio & Pollice, Alfieri & Beneduce, Luciano & Disciglio, Grazia & Tarantino, Emanuele, 2018. "Agro-industrial wastewater reuse for irrigation of a vegetable crop succession under Mediterranean conditions," Agricultural Water Management, Elsevier, vol. 196(C), pages 1-14.
    5. Yasuor, Hagai & Yermiyahu, Uri & Ben-Gal, Alon, 2020. "Consequences of irrigation and fertigation of vegetable crops with variable quality water: Israel as a case study," Agricultural Water Management, Elsevier, vol. 242(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Azad, Nasrin & Behmanesh, Javad & Rezaverdinejad, Vahid & Abbasi, Fariborz & Navabian, Maryam, 2018. "Developing an optimization model in drip fertigation management to consider environmental issues and supply plant requirements," Agricultural Water Management, Elsevier, vol. 208(C), pages 344-356.
    2. Karandish, Fatemeh & Šimůnek, Jiří, 2017. "Two-dimensional modeling of nitrogen and water dynamics for various N-managed water-saving irrigation strategies using HYDRUS," Agricultural Water Management, Elsevier, vol. 193(C), pages 174-190.
    3. Wang, Zhen & Li, Jiusheng & Li, Yanfeng, 2014. "Simulation of nitrate leaching under varying drip system uniformities and precipitation patterns during the growing season of maize in the North China Plain," Agricultural Water Management, Elsevier, vol. 142(C), pages 19-28.
    4. Liu, Jing & Bi, Xiaoqing & Ma, Maoting & Jiang, Lihua & Du, Lianfeng & Li, Shunjiang & Sun, Qinping & Zou, Guoyuan & Liu, Hongbin, 2019. "Precipitation and irrigation dominate soil water leaching in cropland in Northern China," Agricultural Water Management, Elsevier, vol. 211(C), pages 165-171.
    5. Li, Changjian & Xiong, Yunwu & Cui, Zhen & Huang, Quanzhong & Xu, Xu & Han, Wenguang & Huang, Guanhua, 2020. "Effect of irrigation and fertilization regimes on grain yield, water and nitrogen productivity of mulching cultivated maize (Zea mays L.) in the Hetao Irrigation District of China," Agricultural Water Management, Elsevier, vol. 232(C).
    6. Farhadi Machekposhti, Mabood & Shahnazari, Ali & Z. Ahmadi, Mirkhalegh & Aghajani, Ghasem & Ritzema, Henk, 2017. "Effect of irrigation with sea water on soil salinity and yield of oleic sunflower," Agricultural Water Management, Elsevier, vol. 188(C), pages 69-78.
    7. Gheysari, Mahdi & Mirlatifi, Seyed Majid & Homaee, Mehdi & Asadi, Mohammad Esmaeil & Hoogenboom, Gerrit, 2009. "Nitrate leaching in a silage maize field under different irrigation and nitrogen fertilizer rates," Agricultural Water Management, Elsevier, vol. 96(6), pages 946-954, June.
    8. Zou, Haiyang & Fan, Junliang & Zhang, Fucang & Xiang, Youzhen & Wu, Lifeng & Yan, Shicheng, 2020. "Optimization of drip irrigation and fertilization regimes for high grain yield, crop water productivity and economic benefits of spring maize in Northwest China," Agricultural Water Management, Elsevier, vol. 230(C).
    9. Honghong Ma & Tao Yang & Xinxiang Niu & Zhenan Hou & Xingwang Ma, 2021. "Sound Water and Nitrogen Management Decreases Nitrogen Losses from a Drip-Fertigated Cotton Field in Northwestern China," Sustainability, MDPI, Open Access Journal, vol. 13(2), pages 1-13, January.
    10. Chilundo, Mario & Joel, Abraham & Wesström, Ingrid & Brito, Rui & Messing, Ingmar, 2016. "Effects of reduced irrigation dose and slow release fertiliser on nitrogen use efficiency and crop yield in a semi-arid loamy sand," Agricultural Water Management, Elsevier, vol. 168(C), pages 68-77.
    11. Yan, Fulai & Zhang, Fucang & Fan, Xingke & Fan, Junliang & Wang, Ying & Zou, Haiyang & Wang, Haidong & Li, Guodong, 2021. "Determining irrigation amount and fertilization rate to simultaneously optimize grain yield, grain nitrogen accumulation and economic benefit of drip-fertigated spring maize in northwest China," Agricultural Water Management, Elsevier, vol. 243(C).
    12. Chen, Baoqing & Liu, Enke & Mei, Xurong & Yan, Changrong & Garré, Sarah, 2018. "Modelling soil water dynamic in rain-fed spring maize field with plastic mulching," Agricultural Water Management, Elsevier, vol. 198(C), pages 19-27.
    13. Du, Huiying & Gao, Wenxuan & Li, Jiajia & Shen, Shizhou & Wang, Feng & Fu, Li & Zhang, Keqiang, 2019. "Effects of digested biogas slurry applicationmixed with irrigation water on nitrate leaching during wheat-maize rotation in the North China Plain," Agricultural Water Management, Elsevier, vol. 213(C), pages 882-893.
    14. He, Yong & Liang, Hao & Hu, Kelin & Wang, Hongyuan & Hou, Lingling, 2018. "Modeling nitrogen leaching in a spring maize system under changing climate and genotype scenarios in arid Inner Mongolia, China," Agricultural Water Management, Elsevier, vol. 210(C), pages 316-323.
    15. Li, Jungai & Liu, Hongbin & Wang, Hongyuan & Luo, Jiafa & Zhang, Xuejun & Liu, Zhaohui & Zhang, Yitao & Zhai, Limei & Lei, Qiuliang & Ren, Tianzhi & Li, Yan & Bashir, Muhammad Amjad, 2018. "Managing irrigation and fertilization for the sustainable cultivation of greenhouse vegetables," Agricultural Water Management, Elsevier, vol. 210(C), pages 354-363.
    16. Shi, Jianchu & Wu, Xun & Zhang, Mo & Wang, Xiaoyu & Zuo, Qiang & Wu, Xiaoguang & Zhang, Hongfei & Ben-Gal, Alon, 2021. "Numerically scheduling plant water deficit index-based smart irrigation to optimize crop yield and water use efficiency," Agricultural Water Management, Elsevier, vol. 248(C).
    17. Barakat, Mohammad & Cheviron, Bruno & Angulo-Jaramillo, Rafael, 2016. "Influence of the irrigation technique and strategies on the nitrogen cycle and budget: A review," Agricultural Water Management, Elsevier, vol. 178(C), pages 225-238.
    18. Zhang, Tibin & Dong, Qin’ge & Zhan, Xiaoyun & He, Jianqiang & Feng, Hao, 2019. "Moving salts in an impermeable saline-sodic soil with drip irrigation to permit wolfberry production," Agricultural Water Management, Elsevier, vol. 213(C), pages 636-645.
    19. Dokoohaki, Hamze & Gheysari, Mahdi & Mousavi, Sayed-Farhad & Zand-Parsa, Shahrokh & Miguez, Fernando E. & Archontoulis, Sotirios V. & Hoogenboom, Gerrit, 2016. "Coupling and testing a new soil water module in DSSAT CERES-Maize model for maize production under semi-arid condition," Agricultural Water Management, Elsevier, vol. 163(C), pages 90-99.
    20. Komlan Koudahe & Aleksey Y. Sheshukov & Jonathan Aguilar & Koffi Djaman, 2021. "Irrigation-Water Management and Productivity of Cotton: A Review," Sustainability, MDPI, Open Access Journal, vol. 13(18), pages 1-21, September.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:agiwat:v:186:y:2017:i:c:p:40-50. See general information about how to correct material in RePEc.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: . General contact details of provider: http://www.elsevier.com/locate/agwat .

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/locate/agwat .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service hosted by the Research Division of the Federal Reserve Bank of St. Louis . RePEc uses bibliographic data supplied by the respective publishers.