IDEAS home Printed from https://ideas.repec.org/a/gam/jsusta/v13y2021i2p1002-d483283.html
   My bibliography  Save this article

Sound Water and Nitrogen Management Decreases Nitrogen Losses from a Drip-Fertigated Cotton Field in Northwestern China

Author

Listed:
  • Honghong Ma

    (Agricultural College, Shihezi University, Shihezi 832003, China
    Institute of Soil, Fertilizer and Agricultural Water Conservation, Xinjiang Academy of Agricultural Sciences, Urumqi 830091, China
    Key Laboratory of Agricultural Environment of Northwest Oasis, Ministry of Agriculture and Rural Affairs, PR China, Urumqi 830091, China)

  • Tao Yang

    (Agricultural College, Shihezi University, Shihezi 832003, China
    Institute of Soil, Fertilizer and Agricultural Water Conservation, Xinjiang Academy of Agricultural Sciences, Urumqi 830091, China
    Key Laboratory of Agricultural Environment of Northwest Oasis, Ministry of Agriculture and Rural Affairs, PR China, Urumqi 830091, China)

  • Xinxiang Niu

    (Institute of Soil, Fertilizer and Agricultural Water Conservation, Xinjiang Academy of Agricultural Sciences, Urumqi 830091, China
    Key Laboratory of Agricultural Environment of Northwest Oasis, Ministry of Agriculture and Rural Affairs, PR China, Urumqi 830091, China)

  • Zhenan Hou

    (Agricultural College, Shihezi University, Shihezi 832003, China)

  • Xingwang Ma

    (Institute of Soil, Fertilizer and Agricultural Water Conservation, Xinjiang Academy of Agricultural Sciences, Urumqi 830091, China
    Key Laboratory of Agricultural Environment of Northwest Oasis, Ministry of Agriculture and Rural Affairs, PR China, Urumqi 830091, China)

Abstract

Drip irrigation systems are becoming more and more mature and are now widely used to improve crop yield and nitrogen use efficiency in Xinjiang, NW China. However, it is not known if leaching is occurring or not and whether leaching will harm the water environment following N fertilization and drip irrigation. The purpose of our study was to estimate the leaching volumes, nitrogen losses, forms of nitrogen losses, and nitrogen loss coefficients under different N fertilization, P fertilization, K fertilization and irrigation regimes. A long-term field experiment was conducted from 2009 to 2015 in Baotou Lake farm in Korla City, Xinjiang, with drip-irrigated cotton ( Gossypium hirsutum L.) being grown under different N fertilizer and irrigation regimes. The treatments were designed comprising 0 N, 0 P, and 0 K with an irrigation of 480 mm as the control(N 0 P 0 K 0 W 480 ) and the following three other treatments: (1) 357 kg N·hm −2 , 90 kg P·hm −2 , 0 kg K 2 O hm −2 , and irrigation of 480 mm (N 357 P 90 K 0 W 480 ); (2) 357 kg N·hm −2 , 90 kg P·hm −2 , 62 kg K·hm −2 , and irrigation of 420 mm (N 357 P 90 K 62 W 420 ); and (3) 240 kg N·hm −2 , 65 kg P·hm −2 , 62 kg K·hm −2 , and irrigation of 420 mm (N 240 P 65 K 62 W 420 ). The results showed the following: (1) the leaching volume was determined by nitrogen fertilization, phosphorus fertilization, and the irrigation amount. In general, the leaching volume was highest under treatment N 357 P 90 K 0 W 480 . (2) The nitrogen loss was highest under treatment N 357 P 90 K 0 W 480 . (3) Nitrate nitrogen (NO 3 – ) was the main form of nitrogen lost, followed by ammonium nitrogen (NH 4 + ). (4) The annual nitrogen loss coefficients followed the order of: N 357 P 90 K 0 W 480 > N 357 P 90 K 62 W 420 > N 240 P 65 K 62 W 420 > N 0 P 0 K 0 W 480 , with values of 0.85, 0.55, 0.30, and 0, respectively. The leaching volume, nitrogen loss, nitrate nitrogen, ammonium nitrogen, and annual nitrogen loss coefficient were lowest under the N 240 P 65 K 62 W 420 treatment, except in the N 0 P 0 K 0 W 480 treatment. These results demonstrate that optimizing the management of water and nitrogen (N 240 P 65 K 62 W 420 treatment) can effectively reduce nitrogen losses under drip fertigation and plastic mulching.

Suggested Citation

  • Honghong Ma & Tao Yang & Xinxiang Niu & Zhenan Hou & Xingwang Ma, 2021. "Sound Water and Nitrogen Management Decreases Nitrogen Losses from a Drip-Fertigated Cotton Field in Northwestern China," Sustainability, MDPI, vol. 13(2), pages 1-13, January.
  • Handle: RePEc:gam:jsusta:v:13:y:2021:i:2:p:1002-:d:483283
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2071-1050/13/2/1002/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2071-1050/13/2/1002/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Niels Thevs, 2011. "Water Scarcity and Allocation in the Tarim Basin: Decision Structures and Adaptations on the Local Level," Journal of Current Chinese Affairs - China aktuell, Institute of Asian Studies, GIGA German Institute of Global and Area Studies, Hamburg, vol. 40(3), pages 113-137.
    2. Feike, Til & Khor, Ling Yee & Mamitimin, Yusuyunjiang & Ha, Nan & Li, Lin & Abdusalih, Nurbay & Xiao, Haifeng & Doluschitz, Reiner, 2017. "Determinants of cotton farmers’ irrigation water management in arid Northwestern China," Agricultural Water Management, Elsevier, vol. 187(C), pages 1-10.
    3. Hunsaker, D. J. & Clemmens, A. J. & Fangmeier, D. D., 1998. "Cotton response to high frequency surface irrigation," Agricultural Water Management, Elsevier, vol. 37(1), pages 55-74, June.
    4. Shen Yuan & Shaobing Peng, 2017. "Exploring the Trends in Nitrogen Input and Nitrogen Use Efficiency for Agricultural Sustainability," Sustainability, MDPI, vol. 9(10), pages 1-15, October.
    5. Ajdary, Khalil & Singh, D.K. & Singh, A.K. & Khanna, Manoj, 2007. "Modelling of nitrogen leaching from experimental onion field under drip fertigation," Agricultural Water Management, Elsevier, vol. 89(1-2), pages 15-28, April.
    6. Jia, Xucun & Shao, Lijie & Liu, Peng & Zhao, Bingqiang & Gu, Limin & Dong, Shuting & Bing, So Hwat & Zhang, Jiwang & Zhao, Bin, 2014. "Effect of different nitrogen and irrigation treatments on yield and nitrate leaching of summer maize (Zea mays L.) under lysimeter conditions," Agricultural Water Management, Elsevier, vol. 137(C), pages 92-103.
    7. Rajput, T.B.S. & Patel, Neelam, 2006. "Water and nitrate movement in drip-irrigated onion under fertigation and irrigation treatments," Agricultural Water Management, Elsevier, vol. 79(3), pages 293-311, February.
    8. Ling Li & Hongguang Liu & Xinlin He & En Lin & Guang Yang, 2020. "Winter Irrigation Effects on Soil Moisture, Temperature and Salinity, and on Cotton Growth in Salinized Fields in Northern Xinjiang, China," Sustainability, MDPI, vol. 12(18), pages 1-27, September.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Liu, Kai & Liao, Huan & Hao, Haibo & Hou, Zhenan, 2024. "Water and nitrogen supply at spatially distinct locations improves cotton water productivity and nitrogen use efficiency and yield under drip irrigation," Agricultural Water Management, Elsevier, vol. 296(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Chilundo, Mario & Joel, Abraham & Wesström, Ingrid & Brito, Rui & Messing, Ingmar, 2018. "Influence of irrigation and fertilisation management on the seasonal distribution of water and nitrogen in a semi-arid loamy sandy soil," Agricultural Water Management, Elsevier, vol. 199(C), pages 120-137.
    2. Ravikumar, V. & Vijayakumar, G. & Simunek, J. & Chellamuthu, S. & Santhi, R. & Appavu, K., 2011. "Evaluation of fertigation scheduling for sugarcane using a vadose zone flow and transport model," Agricultural Water Management, Elsevier, vol. 98(9), pages 1431-1440, July.
    3. Wang, Zhen & Li, Jiusheng & Li, Yanfeng, 2014. "Simulation of nitrate leaching under varying drip system uniformities and precipitation patterns during the growing season of maize in the North China Plain," Agricultural Water Management, Elsevier, vol. 142(C), pages 19-28.
    4. Głąb, Tomasz & Szewczyk, Wojciech & Gondek, Krzysztof & Mierzwa-Hersztek, Monika & Palmowska, Joanna & Nęcka, Krzysztof, 2020. "Optimization of turfgrass fertigation rate and frequency," Agricultural Water Management, Elsevier, vol. 234(C).
    5. Libutti, Angela & Monteleone, Massimo, 2017. "Soil vs. groundwater: The quality dilemma. Managing nitrogen leaching and salinity control under irrigated agriculture in Mediterranean conditions," Agricultural Water Management, Elsevier, vol. 186(C), pages 40-50.
    6. Brar, Harjeet Singh & Singh, Pritpal, 2022. "Pre-and post-sowing irrigation scheduling impacts on crop phenology and water productivity of cotton (Gossypium hirsutum L.) in sub-tropical north-western India," Agricultural Water Management, Elsevier, vol. 274(C).
    7. Azad, Nasrin & Behmanesh, Javad & Rezaverdinejad, Vahid & Abbasi, Fariborz & Navabian, Maryam, 2018. "Developing an optimization model in drip fertigation management to consider environmental issues and supply plant requirements," Agricultural Water Management, Elsevier, vol. 208(C), pages 344-356.
    8. Feike, Til & Khor, Ling Yee & Mamitimin, Yusuyunjiang & Ha, Nan & Li, Lin & Abdusalih, Nurbay & Xiao, Haifeng & Doluschitz, Reiner, 2017. "Determinants of cotton farmers’ irrigation water management in arid Northwestern China," Agricultural Water Management, Elsevier, vol. 187(C), pages 1-10.
    9. Karandish, Fatemeh & Šimůnek, Jiří, 2017. "Two-dimensional modeling of nitrogen and water dynamics for various N-managed water-saving irrigation strategies using HYDRUS," Agricultural Water Management, Elsevier, vol. 193(C), pages 174-190.
    10. Aihemaitijiang Rouzi & Ümüt Halik & Niels Thevs & Martin Welp & Tayierjiang Aishan, 2017. "Water Efficient Alternative Crops for Sustainable Agriculture along the Tarim Basin: A Comparison of the Economic Potentials of Apocynum pictum , Chinese Red Date and Cotton in Xinjiang, China," Sustainability, MDPI, vol. 10(1), pages 1-17, December.
    11. Zwart, Sander J. & Bastiaanssen, Wim G. M., 2004. "Review of measured crop water productivity values for irrigated wheat, rice, cotton and maize," Agricultural Water Management, Elsevier, vol. 69(2), pages 115-133, September.
    12. Phogat, V. & Skewes, M.A. & Cox, J.W. & Alam, J. & Grigson, G. & Šimůnek, J., 2013. "Evaluation of water movement and nitrate dynamics in a lysimeter planted with an orange tree," Agricultural Water Management, Elsevier, vol. 127(C), pages 74-84.
    13. Zhang, You-Liang & Feng, Shao-Yuan & Wang, Feng-Xin & Binley, Andrew, 2018. "Simulation of soil water flow and heat transport in drip irrigated potato field with raised beds and full plastic-film mulch in a semiarid area," Agricultural Water Management, Elsevier, vol. 209(C), pages 178-187.
    14. Liu, Chunye & Wang, Rui & Wang, Wene & Hu, Xiaotao & Cheng, Yong & Liu, Fulai, 2021. "Effect of fertilizer solution concentrations on filter clogging in drip fertigation systems," Agricultural Water Management, Elsevier, vol. 250(C).
    15. Ul-Allah, Sami & Rehman, Abdul & Hussain, Mubshar & Farooq, Muhammad, 2021. "Fiber yield and quality in cotton under drought: Effects and management," Agricultural Water Management, Elsevier, vol. 255(C).
    16. Liu, Yi & Zeng, Wenzhi & Ao, Chang & Lei, Guoqing & Wu, Jingwei & Huang, Jiesheng & Gaiser, Thomas & Srivastava, Amit Kumar, 2022. "Optimization of winter irrigation management for salinized farmland using a coupled model of soil water flow and crop growth," Agricultural Water Management, Elsevier, vol. 270(C).
    17. Minghao Bai & Shenbei Zhou & Ting Tang, 2022. "A Reconstruction of Irrigated Cropland Extent in China from 2000 to 2019 Using the Synergy of Statistics and Satellite-Based Datasets," Land, MDPI, vol. 11(10), pages 1-27, September.
    18. Feike, Til & Henseler, Martin, 2017. "Multiple Policy Instruments for Sustainable Water Management in Crop Production - A Modeling Study for the Chinese Aksu-Tarim Region," Ecological Economics, Elsevier, vol. 135(C), pages 42-54.
    19. Oweis, T.Y. & Farahani, H.J. & Hachum, A.Y., 2011. "Evapotranspiration and water use of full and deficit irrigated cotton in the Mediterranean environment in northern Syria," Agricultural Water Management, Elsevier, vol. 98(8), pages 1239-1248, May.
    20. Sangha, Laljeet & Shortridge, Julie & Frame, William, 2023. "The impact of nitrogen treatment and short-term weather forecast data in irrigation scheduling of corn and cotton on water and nutrient use efficiency in humid climates," Agricultural Water Management, Elsevier, vol. 283(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jsusta:v:13:y:2021:i:2:p:1002-:d:483283. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.