IDEAS home Printed from https://ideas.repec.org/a/gam/jsusta/v15y2023i3p2544-d1052589.html
   My bibliography  Save this article

A Lattice Hydrodynamic Model for Four-Way Pedestrian Traffic with Turning Capacity

Author

Listed:
  • Yuan Tang

    (Institute of Physical Science and Technology, Guangxi University, Nanning 530004, China)

  • Yu Xue

    (Institute of Physical Science and Technology, Guangxi University, Nanning 530004, China)

  • Muyang Huang

    (Institute of Physical Science and Technology, Guangxi University, Nanning 530004, China)

  • Qiyun Wen

    (Institute of Physical Science and Technology, Guangxi University, Nanning 530004, China)

  • Bingling Cen

    (Institute of Physical Science and Technology, Guangxi University, Nanning 530004, China)

  • Dong Chen

    (College of Management Science and Engineering, Guangxi University of Finance and Economics, Nanning 530004, China)

Abstract

In this paper, a lattice hydrodynamic model of four-way pedestrian traffic considering turning capacity is proposed. The stability conditions are obtained by stability analysis. The mKdV equation is derived using the reductive perturbation method of nonlinear analysis, and the corresponding density wave solutions are obtained. The results of theoretical analysis are verified by detailed numerical simulation of the spatial-temporal patterns of the density of pedestrian flow evolution under different initial conditions and the density profile at different moments. The results show that the balanced distribution of pedestrian flow along the horizontal and vertical passages can promote the stability of pedestrian traffic, and pedestrians turning at the intersections can stimulate traffic jams.

Suggested Citation

  • Yuan Tang & Yu Xue & Muyang Huang & Qiyun Wen & Bingling Cen & Dong Chen, 2023. "A Lattice Hydrodynamic Model for Four-Way Pedestrian Traffic with Turning Capacity," Sustainability, MDPI, vol. 15(3), pages 1-17, January.
  • Handle: RePEc:gam:jsusta:v:15:y:2023:i:3:p:2544-:d:1052589
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2071-1050/15/3/2544/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2071-1050/15/3/2544/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Weifeng, Fang & Lizhong, Yang & Weicheng, Fan, 2003. "Simulation of bi-direction pedestrian movement using a cellular automata model," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 321(3), pages 633-640.
    2. Nagatani, Takashi, 1998. "Modified KdV equation for jamming transition in the continuum models of traffic," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 261(3), pages 599-607.
    3. Hughes, Roger L., 2002. "A continuum theory for the flow of pedestrians," Transportation Research Part B: Methodological, Elsevier, vol. 36(6), pages 507-535, July.
    4. Peng, Guanghan & Kuang, Hua & Qing, Li, 2018. "Feedback control method in lattice hydrodynamic model under honk environment," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 509(C), pages 651-656.
    5. Gupta, Arvind Kumar & Redhu, Poonam, 2013. "Analyses of driver’s anticipation effect in sensing relative flux in a new lattice model for two-lane traffic system," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 392(22), pages 5622-5632.
    6. Li, Lixiang & Cheng, Rongjun & Ge, Hongxia, 2021. "New feedback control for a novel two-dimensional lattice hydrodynamic model considering driver’s memory effect," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 561(C).
    7. Wang, Qingying & Ge, Hongxia, 2019. "An improved lattice hydrodynamic model accounting for the effect of “backward looking” and flow integral," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 513(C), pages 438-446.
    8. Madaan, Nikita & Sharma, Sapna, 2021. "A lattice model accounting for multi-lane traffic system," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 564(C).
    9. Wang, Yunong & Cheng, Rongjun & Ge, Hongxia, 2017. "A lattice hydrodynamic model based on delayed feedback control considering the effect of flow rate difference," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 479(C), pages 478-484.
    10. Zhang, H. M., 2002. "A non-equilibrium traffic model devoid of gas-like behavior," Transportation Research Part B: Methodological, Elsevier, vol. 36(3), pages 275-290, March.
    11. Zhang, Yu & Wang, Sha & Pan, Dong-bo & Zhang, Geng, 2021. "Stability analysis for a new lattice hydrodynamic model with time-varying delay in sensing traffic flux," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 561(C).
    12. Blue, Victor J. & Adler, Jeffrey L., 2001. "Cellular automata microsimulation for modeling bi-directional pedestrian walkways," Transportation Research Part B: Methodological, Elsevier, vol. 35(3), pages 293-312, March.
    13. Tian, Huan-huan & He, Hong-di & Wei, Yan-fang & Yu, Xue & Lu, Wei-zhen, 2009. "Lattice hydrodynamic model with bidirectional pedestrian flow," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 388(14), pages 2895-2902.
    14. Muramatsu, Masakuni & Irie, Tunemasa & Nagatani, Takashi, 1999. "Jamming transition in pedestrian counter flow," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 267(3), pages 487-498.
    15. Dirk Helbing & Lubos Buzna & Anders Johansson & Torsten Werner, 2005. "Self-Organized Pedestrian Crowd Dynamics: Experiments, Simulations, and Design Solutions," Transportation Science, INFORMS, vol. 39(1), pages 1-24, February.
    16. Muramatsu, Masakuni & Nagatani, Takashi, 2000. "Jamming transition in two-dimensional pedestrian traffic," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 275(1), pages 281-291.
    17. Dirk Helbing & Joachim Keltsch & Péter Molnár, 1997. "Modelling the evolution of human trail systems," Nature, Nature, vol. 388(6637), pages 47-50, July.
    18. Peng, Guanghan & Yang, Shuhong & Zhao, Hongzhuan, 2018. "A delayed-feedback control method for the lattice hydrodynamic model caused by the historic density difference effect," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 509(C), pages 855-860.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Cheng-Jie Jin & Ke-Da Shi & Shu-Yi Fang, 2023. "Simulation of Single-File Pedestrian Flow under High-Density Condition by a Modified Social Force Model," Sustainability, MDPI, vol. 15(11), pages 1-15, May.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Zhai, Cong & Wu, Weitiao & Xiao, Yingping, 2023. "The jamming transition of multi-lane lattice hydrodynamic model with passing effect," Chaos, Solitons & Fractals, Elsevier, vol. 171(C).
    2. Madaan, Nikita & Sharma, Sapna, 2022. "Delayed-feedback control in multi-lane traffic system," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 599(C).
    3. Zhai, Cong & Wu, Weitiao & Xiao, Yingping & Luo, Qiang & Zhang, Yusong, 2022. "Modeling bidirectional pedestrian flow with the perceived uncertainty of preceding pedestrian information," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 597(C).
    4. Haghani, Milad, 2021. "The knowledge domain of crowd dynamics: Anatomy of the field, pioneering studies, temporal trends, influential entities and outside-domain impact," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 580(C).
    5. Yue, Hao & Guan, Hongzhi & Zhang, Juan & Shao, Chunfu, 2010. "Study on bi-direction pedestrian flow using cellular automata simulation," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 389(3), pages 527-539.
    6. Goldsztein, Guillermo H., 2017. "Crowd of individuals walking in opposite directions. A toy model to study the segregation of the group into lanes of individuals moving in the same direction," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 479(C), pages 162-173.
    7. Kaur, Daljeet & Sharma, Sapna, 2020. "A new two-lane lattice model by considering predictive effect in traffic flow," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 539(C).
    8. Yue, Hao & Hao, Herui & Chen, Xiaoming & Shao, Chunfu, 2007. "Simulation of pedestrian flow on square lattice based on cellular automata model," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 384(2), pages 567-588.
    9. Peng, Guanghan & Jia, Teti & Kuang, Hua & Tan, Huili, 2022. "Energy consumption in a new lattice hydrodynamic model based on the delayed effect of collaborative information transmission under V2X environment," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 585(C).
    10. Flötteröd, Gunnar & Lämmel, Gregor, 2015. "Bidirectional pedestrian fundamental diagram," Transportation Research Part B: Methodological, Elsevier, vol. 71(C), pages 194-212.
    11. Abdelghany, Ahmed & Abdelghany, Khaled & Mahmassani, Hani, 2016. "A hybrid simulation-assignment modeling framework for crowd dynamics in large-scale pedestrian facilities," Transportation Research Part A: Policy and Practice, Elsevier, vol. 86(C), pages 159-176.
    12. Zhou, Jibiao & Chen, Siyuan & Ma, Changxi & Dong, Sheng, 2022. "Stability analysis of pedestrian traffic flow in horizontal channels: A numerical simulation method," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 587(C).
    13. Zhai, Cong & Zhang, Ronghui & Peng, Tao & Zhong, Changfu & Xu, Hongguo, 2023. "Heterogeneous lattice hydrodynamic model and jamming transition mixed with connected vehicles and human-driven vehicles," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 623(C).
    14. Sun, Yi, 2018. "Kinetic Monte Carlo simulations of two-dimensional pedestrian flow models," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 505(C), pages 836-847.
    15. Feliciani, Claudio & Nishinari, Katsuhiro, 2016. "An improved Cellular Automata model to simulate the behavior of high density crowd and validation by experimental data," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 451(C), pages 135-148.
    16. Sun, Yi, 2019. "Simulations of bi-direction pedestrian flow using kinetic Monte Carlo methods," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 524(C), pages 519-531.
    17. Lili Lu & Gang Ren & Wei Wang & Chen Yu & Chenzi Ding, 2013. "Exploring the Effects of Different Walking Strategies on Bi-Directional Pedestrian Flow," Discrete Dynamics in Nature and Society, Hindawi, vol. 2013, pages 1-9, November.
    18. Sun, Yi, 2020. "Kinetic Monte Carlo simulations of bi-direction pedestrian flow with different walk speeds," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 549(C).
    19. Varas, A. & Cornejo, M.D. & Mainemer, D. & Toledo, B. & Rogan, J. & Muñoz, V. & Valdivia, J.A., 2007. "Cellular automaton model for evacuation process with obstacles," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 382(2), pages 631-642.
    20. Rongjun, Cheng & Hongxia, Ge & Jufeng, Wang, 2018. "The nonlinear analysis for a new continuum model considering anticipation and traffic jerk effect," Applied Mathematics and Computation, Elsevier, vol. 332(C), pages 493-505.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jsusta:v:15:y:2023:i:3:p:2544-:d:1052589. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.