IDEAS home Printed from https://ideas.repec.org/a/eee/phsmap/v599y2022ics0378437122002990.html
   My bibliography  Save this article

Delayed-feedback control in multi-lane traffic system

Author

Listed:
  • Madaan, Nikita
  • Sharma, Sapna

Abstract

In this paper, we investigate the effect of delayed feedback control on a multi-lane system. An extended lattice hydrodynamic model is derived on a multi-lane road which includes more comprehensive information. The stability condition is obtained via control method (based on the Hurwitz criteria and the H∞- norm). The Bode-plot of transfer function shows that the stability region enhances when delayed-feedback controller on multi-lane system is considered. To describe the propagating behavior of traffic density wave near the critical point, the modified Korteweg–de Vries (mKdV) equation is formulated through nonlinear analysis. It is concluded that considering the delayed-feedback control in the multi-lane system contributes to mitigating traffic jams. All the theoretical results are verified in both transient and steady state with numerical simulations on a hypothetical circular road.

Suggested Citation

  • Madaan, Nikita & Sharma, Sapna, 2022. "Delayed-feedback control in multi-lane traffic system," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 599(C).
  • Handle: RePEc:eee:phsmap:v:599:y:2022:i:c:s0378437122002990
    DOI: 10.1016/j.physa.2022.127393
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0378437122002990
    Download Restriction: Full text for ScienceDirect subscribers only. Journal offers the option of making the article available online on Science direct for a fee of $3,000

    File URL: https://libkey.io/10.1016/j.physa.2022.127393?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Zhao, Hongzhuan & Xia, Dongxue & Yang, Shuhong & Peng, Guanghan, 2020. "The delayed-time effect of traffic flux on traffic stability for two-lane freeway," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 540(C).
    2. Jiang, Rui & Wu, Qing-Song & Zhu, Zuo-Jin, 2002. "A new continuum model for traffic flow and numerical tests," Transportation Research Part B: Methodological, Elsevier, vol. 36(5), pages 405-419, June.
    3. Zeng, Jiao-Yan & Ou, Hui & Tang, Tie-Qiao, 2019. "Feedback strategy with delay in a two-route traffic network," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 534(C).
    4. Zhao, Hongzhuan & Chen, Qiguang & Shi, Wei & Gu, Tianlong & Li, Wenyong, 2019. "Stability analysis of an improved car-following model accounting for the driver’s characteristics and automation," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 526(C).
    5. Kaur, Daljeet & Sharma, Sapna, 2020. "A new two-lane lattice model by considering predictive effect in traffic flow," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 539(C).
    6. Xinyue Qi & Hongxia Ge & Rongjun Cheng, 2020. "Analysis of a Novel Two-Lane Hydrodynamic Lattice Model Accounting for Driver’s Aggressive Effect and Flow Difference Integral," Mathematical Problems in Engineering, Hindawi, vol. 2020, pages 1-13, May.
    7. Kaur, Ramanpreet & Sharma, Sapna, 2018. "Analyses of lattice hydrodynamic model using delayed feedback control with passing," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 510(C), pages 446-455.
    8. Nagatani, Takashi, 1998. "Modified KdV equation for jamming transition in the continuum models of traffic," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 261(3), pages 599-607.
    9. Peng, Guanghan & Kuang, Hua & Qing, Li, 2018. "Feedback control method in lattice hydrodynamic model under honk environment," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 509(C), pages 651-656.
    10. Chang, Yinyin & He, Zhiting & Cheng, Rongjun, 2019. "An extended lattice hydrodynamic model considering the driver’s sensory memory and delayed-feedback control," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 514(C), pages 522-532.
    11. Tang, Tie-Qiao & Luo, Xiao-Feng & Liu, Kai, 2016. "Impacts of the driver’s bounded rationality on the traffic running cost under the car-following model," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 457(C), pages 316-321.
    12. Gupta, Arvind Kumar & Redhu, Poonam, 2013. "Analyses of driver’s anticipation effect in sensing relative flux in a new lattice model for two-lane traffic system," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 392(22), pages 5622-5632.
    13. Nagatani, Takashi, 1999. "TDGL and MKdV equations for jamming transition in the lattice models of traffic," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 264(3), pages 581-592.
    14. Wang, Tao & Tang, Tie-Qiao & Chen, Liang & Huang, Hai-Jun, 2019. "Analysis of trip cost allowing late arrival in a traffic corridor with one entry and one exit under car-following model," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 521(C), pages 387-398.
    15. Madaan, Nikita & Sharma, Sapna, 2021. "A lattice model accounting for multi-lane traffic system," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 564(C).
    16. Wang, Yunong & Cheng, Rongjun & Ge, Hongxia, 2017. "A lattice hydrodynamic model based on delayed feedback control considering the effect of flow rate difference," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 479(C), pages 478-484.
    17. Nagatani, Takashi, 1999. "Jamming transitions and the modified Korteweg–de Vries equation in a two-lane traffic flow," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 265(1), pages 297-310.
    18. Peng, Guanghan & Bai, Kezhao & Kuang, Hua, 2019. "Feedback control caused by honk effect incorporating the driver’s characteristics in lattice hydrodynamic model," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 526(C).
    19. Sharma, Sapna, 2015. "Lattice hydrodynamic modeling of two-lane traffic flow with timid and aggressive driving behavior," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 421(C), pages 401-411.
    20. Peng, Guanghan & Kuang, Hua & Zhao, Hongzhuan & Qing, Li, 2019. "Nonlinear analysis of a new lattice hydrodynamic model with the consideration of honk effect on flux for two-lane highway," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 515(C), pages 93-101.
    21. Zhang, Jing & Xu, Keyu & Li, Shubin & Wang, Tao, 2020. "A new two-lane lattice hydrodynamic model with the introduction of driver’s predictive effect," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 551(C).
    22. Cen, Bing-ling & Xue, Yu & Zhang, Yi-cai & Wang, Xue & He, Hong-di, 2020. "A feedback control method with consideration of the next-nearest-neighbor interactions in a lattice hydrodynamic model," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 559(C).
    23. Peng, Guanghan & Yang, Shuhong & Xia, Dongxue & Li, Xiaoqin, 2019. "Delayed-feedback control in a car-following model with the combination of V2V communication," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 526(C).
    24. Zhang, Geng & Sun, Di-hua & Liu, Wei-ning & Zhao, Min & Cheng, Sen-lin, 2015. "Analysis of two-lane lattice hydrodynamic model with consideration of drivers’ characteristics," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 422(C), pages 16-24.
    25. Cheng, Rongjun & Wang, Yunong, 2019. "An extended lattice hydrodynamic model considering the delayed feedback control on a curved road," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 513(C), pages 510-517.
    26. Daljeet Kaur & Sapna Sharma, 2021. "Prior information affecting traffic dynamics in a two dimensional (2D) network," The European Physical Journal B: Condensed Matter and Complex Systems, Springer;EDP Sciences, vol. 94(9), pages 1-12, September.
    27. Peng, Guanghan & Yang, Shuhong & Zhao, Hongzhuan, 2018. "A delayed-feedback control method for the lattice hydrodynamic model caused by the historic density difference effect," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 509(C), pages 855-860.
    28. Guanghan Peng & Xinhua Cai & Changqing Liu & Binfang Cao, 2011. "A New Lattice Model Of Traffic Flow With The Consideration Of The Honk Effect," International Journal of Modern Physics C (IJMPC), World Scientific Publishing Co. Pte. Ltd., vol. 22(09), pages 967-976.
    29. Daljeet Kaur & Sapna Sharma, 2020. "The impact of the predictive effect on traffic dynamics in a lattice model with passing," The European Physical Journal B: Condensed Matter and Complex Systems, Springer;EDP Sciences, vol. 93(3), pages 1-10, March.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Zhai, Cong & Wu, Weitiao & Xiao, Yingping, 2023. "The jamming transition of multi-lane lattice hydrodynamic model with passing effect," Chaos, Solitons & Fractals, Elsevier, vol. 171(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Nikita Madaan & Sapna Sharma, 2022. "Influence of driver’s behavior with empirical lane changing on the traffic dynamics," The European Physical Journal B: Condensed Matter and Complex Systems, Springer;EDP Sciences, vol. 95(1), pages 1-11, January.
    2. Madaan, Nikita & Sharma, Sapna, 2021. "A lattice model accounting for multi-lane traffic system," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 564(C).
    3. Kaur, Daljeet & Sharma, Sapna & Gupta, Arvind Kumar, 2022. "Analyses of lattice hydrodynamic area occupancy model for heterogeneous disorder traffic," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 607(C).
    4. Peng, Guanghan & Jia, Teti & Kuang, Hua & Tan, Huili, 2022. "Energy consumption in a new lattice hydrodynamic model based on the delayed effect of collaborative information transmission under V2X environment," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 585(C).
    5. Zhai, Cong & Zhang, Ronghui & Peng, Tao & Zhong, Changfu & Xu, Hongguo, 2023. "Heterogeneous lattice hydrodynamic model and jamming transition mixed with connected vehicles and human-driven vehicles," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 623(C).
    6. Kaur, Daljeet & Sharma, Sapna, 2020. "A new two-lane lattice model by considering predictive effect in traffic flow," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 539(C).
    7. Zhai, Cong & Wu, Weitiao & Xiao, Yingping, 2023. "The jamming transition of multi-lane lattice hydrodynamic model with passing effect," Chaos, Solitons & Fractals, Elsevier, vol. 171(C).
    8. Zhai, Cong & Wu, Weitiao & Xiao, Yingping & Luo, Qiang & Zhang, Yusong, 2022. "Modeling bidirectional pedestrian flow with the perceived uncertainty of preceding pedestrian information," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 597(C).
    9. Chang, Yinyin & He, Zhiting & Cheng, Rongjun, 2019. "Analysis of the historical time integral form of relative flux and feedback control in an extended lattice hydrodynamic model," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 523(C), pages 326-334.
    10. Jiao, Yulei & Ge, Hongxia & Cheng, Rongjun, 2019. "Nonlinear analysis for a modified continuum model considering electronic throttle (ET) and backward looking effect," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 535(C).
    11. Kaur, Ramanpreet & Sharma, Sapna, 2017. "Analysis of driver’s characteristics on a curved road in a lattice model," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 471(C), pages 59-67.
    12. Cen, Bing-ling & Xue, Yu & Zhang, Yi-cai & Wang, Xue & He, Hong-di, 2020. "A feedback control method with consideration of the next-nearest-neighbor interactions in a lattice hydrodynamic model," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 559(C).
    13. Huimin Liu & Rongjun Cheng & Tingliu Xu, 2021. "Analysis of a Novel Two-Dimensional Lattice Hydrodynamic Model Considering Predictive Effect," Mathematics, MDPI, vol. 9(19), pages 1-13, October.
    14. Verma, Muskan & Sharma, Sapna, 2022. "Chaotic jam and phase transitions in a lattice model with density dependent passing," Chaos, Solitons & Fractals, Elsevier, vol. 162(C).
    15. Sun, Fengxin & Chow, Andy H.F. & Lo, S.M. & Ge, Hongxia, 2018. "A two-lane lattice hydrodynamic model with heterogeneous lane changing rates," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 511(C), pages 389-400.
    16. Kaur, Ramanpreet & Sharma, Sapna, 2018. "Modeling and simulation of driver’s anticipation effect in a two lane system on curved road with slope," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 499(C), pages 110-120.
    17. Zhang, Yicai & Zhao, Min & Sun, Dihua & Liu, Xiaoyu & Huang, Shuai & Chen, Dong, 2022. "Robust H-infinity control for connected vehicles in lattice hydrodynamic model at highway tunnel," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 603(C).
    18. Yuan Tang & Yu Xue & Muyang Huang & Qiyun Wen & Bingling Cen & Dong Chen, 2023. "A Lattice Hydrodynamic Model for Four-Way Pedestrian Traffic with Turning Capacity," Sustainability, MDPI, vol. 15(3), pages 1-17, January.
    19. Kaur, Ramanpreet & Sharma, Sapna, 2018. "Analyses of lattice hydrodynamic model using delayed feedback control with passing," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 510(C), pages 446-455.
    20. Sun, Lu & Jafaripournimchahi, Ammar & Hu, Wusheng, 2020. "A forward-looking anticipative viscous high-order continuum model considering two leading vehicles for traffic flow through wireless V2X communication in autonomous and connected vehicle environment," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 556(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:phsmap:v:599:y:2022:i:c:s0378437122002990. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/physica-a-statistical-mechpplications/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.