IDEAS home Printed from https://ideas.repec.org/a/gam/jsusta/v15y2023i2p1064-d1027178.html
   My bibliography  Save this article

Hydrological Analysis of Green Roofs Performance under a Mediterranean Climate: A Case Study in Lisbon, Portugal

Author

Listed:
  • Maria Luíza Santos

    (Department of Civil Engineering and Architecture and Georesources, Instituto Superior Técnico, University of Lisbon, CERIS, Av. Rovisco Pais, 1049-001 Lisbon, Portugal)

  • Cristina Matos Silva

    (Department of Civil Engineering and Architecture and Georesources, Instituto Superior Técnico, University of Lisbon, CERIS, Av. Rovisco Pais, 1049-001 Lisbon, Portugal)

  • Filipa Ferreira

    (Department of Civil Engineering and Architecture and Georesources, Instituto Superior Técnico, University of Lisbon, CERIS, Av. Rovisco Pais, 1049-001 Lisbon, Portugal)

  • José Saldanha Matos

    (Department of Civil Engineering and Architecture and Georesources, Instituto Superior Técnico, University of Lisbon, CERIS, Av. Rovisco Pais, 1049-001 Lisbon, Portugal)

Abstract

In this paper, the hydrological performance of eight pilot green roofs (GR) installed in Lisbon, Portugal, under a Mediterranean climate is analyzed. The pilot units were installed at Instituto Superior Técnico campus of Lisbon University. The pilots present different plant species and different substrate types, with some of the units incorporating recycled construction and demolition waste (RCW). The green roofs pilots’ hydrologic performance was evaluated through the simulation of artificial precipitation events between March 2021 and July 2021. Considering the results obtained, it can be concluded that the inclusion of RCW in the substrate composition did not hinder the development of vegetation or the hydrological performance of GR. The results showed a rainfall water retention per event ranging from 37% to 100%, with an average rainfall retention of about 81%. The runoff delay ranged from 2 to 18 min, and the peak attenuation ranged from 30 to 100%. The results indicated that previous substrate moisture strongly influences the hydrological performance of GR. As the inclusion of RCW in the substrate composition promotes a more effective drainage of the substrate during dry conditions, it is considered that RCW may have positive impacts on GR’s hydrological performance.

Suggested Citation

  • Maria Luíza Santos & Cristina Matos Silva & Filipa Ferreira & José Saldanha Matos, 2023. "Hydrological Analysis of Green Roofs Performance under a Mediterranean Climate: A Case Study in Lisbon, Portugal," Sustainability, MDPI, vol. 15(2), pages 1-18, January.
  • Handle: RePEc:gam:jsusta:v:15:y:2023:i:2:p:1064-:d:1027178
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2071-1050/15/2/1064/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2071-1050/15/2/1064/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Ignacio Andrés-Doménech & Sara Perales-Momparler & Adrián Morales-Torres & Ignacio Escuder-Bueno, 2018. "Hydrological Performance of Green Roofs at Building and City Scales under Mediterranean Conditions," Sustainability, MDPI, vol. 10(9), pages 1-15, August.
    2. Manso, Maria & Teotónio, Inês & Silva, Cristina Matos & Cruz, Carlos Oliveira, 2021. "Green roof and green wall benefits and costs: A review of the quantitative evidence," Renewable and Sustainable Energy Reviews, Elsevier, vol. 135(C).
    3. Berardi, Umberto & GhaffarianHoseini, AmirHosein & GhaffarianHoseini, Ali, 2014. "State-of-the-art analysis of the environmental benefits of green roofs," Applied Energy, Elsevier, vol. 115(C), pages 411-428.
    4. Mengmeng Cui & Filipa Ferreira & Tze Kwan Fung & José Saldanha Matos, 2021. "Tale of Two Cities: How Nature-Based Solutions Help Create Adaptive and Resilient Urban Water Management Practices in Singapore and Lisbon," Sustainability, MDPI, vol. 13(18), pages 1-22, September.
    5. Lilliana L. H. Peng & C. Y. Jim, 2015. "Seasonal and Diurnal Thermal Performance of a Subtropical Extensive Green Roof: The Impacts of Background Weather Parameters," Sustainability, MDPI, vol. 7(8), pages 1-16, August.
    6. Patrizia Piro & Marco Carbone & Marilena De Simone & Mario Maiolo & Piero Bevilacqua & Natale Arcuri, 2018. "Energy and Hydraulic Performance of a Vegetated Roof in Sub-Mediterranean Climate," Sustainability, MDPI, vol. 10(10), pages 1-13, September.
    7. Shlomit Paz & Maya Negev & Alexandra Clermont & Manfred S. Green, 2016. "Health Aspects of Climate Change in Cities with Mediterranean Climate, and Local Adaptation Plans," IJERPH, MDPI, vol. 13(4), pages 1-20, April.
    8. Heng Luo & Ning Wang & Jianping Chen & Xiaoyan Ye & Yun-Fei Sun, 2015. "Study on the Thermal Effects and Air Quality Improvement of Green Roof," Sustainability, MDPI, vol. 7(3), pages 1-14, March.
    9. I. Gnecco & A. Palla & L.G. Lanza & P. Barbera, 2013. "The Role of Green Roofs as a Source/sink of Pollutants in Storm Water Outflows," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 27(14), pages 4715-4730, November.
    10. Stefano Cascone, 2019. "Green Roof Design: State of the Art on Technology and Materials," Sustainability, MDPI, vol. 11(11), pages 1-27, May.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Flora Silva & Cristina Sousa Coutinho Calheiros & António Albuquerque & Jorge Pedro Lopes & Ana Maria Antão-Geraldes, 2023. "Technical and Financial Feasibility Analysis of Rainwater Harvesting Using Conventional or Green Roofs in an Industrial Building," Sustainability, MDPI, vol. 15(16), pages 1-12, August.
    2. Jesse Weggemans & Maria Luiza Santos & Filipa Ferreira & Gabriel Duarte Moreno & José Saldanha Matos, 2023. "Modeling the Hydraulic Performance of Pilot Green Roofs Using the Storm Water Management Model: How Important Is Calibration?," Sustainability, MDPI, vol. 15(19), pages 1-16, October.
    3. Flora Silva & Cristina Sousa Coutinho Calheiros & Guilherme Valle & Pedro Pinto & António Albuquerque & Ana Maria Antão-Geraldes, 2023. "Influence of Green Roofs on the Design of a Public Stormwater Drainage System: A Case Study," Sustainability, MDPI, vol. 15(7), pages 1-13, March.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Fabiana Frota de Albuquerque Landi & Claudia Fabiani & Anna Laura Pisello, 2021. "Experimental Winter Monitoring of a Light-Weight Green Roof Assembly for Building Retrofit," Sustainability, MDPI, vol. 13(9), pages 1-20, April.
    2. Stefano Cascone, 2019. "Green Roof Design: State of the Art on Technology and Materials," Sustainability, MDPI, vol. 11(11), pages 1-27, May.
    3. A. Raimondi & G. Becciu, 2021. "Performance of Green Roofs for Rainwater Control," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 35(1), pages 99-111, January.
    4. Yu Chen & Jacopo Gaspari, 2023. "Exploring an Integrated System for Urban Stormwater Management: A Systematic Literature Review of Solutions at Building and District Scales," Sustainability, MDPI, vol. 15(13), pages 1-16, June.
    5. Mitali Yeshwant Joshi & Jacques Teller, 2021. "Urban Integration of Green Roofs: Current Challenges and Perspectives," Sustainability, MDPI, vol. 13(22), pages 1-33, November.
    6. Jesse Weggemans & Maria Luiza Santos & Filipa Ferreira & Gabriel Duarte Moreno & José Saldanha Matos, 2023. "Modeling the Hydraulic Performance of Pilot Green Roofs Using the Storm Water Management Model: How Important Is Calibration?," Sustainability, MDPI, vol. 15(19), pages 1-16, October.
    7. Daniel Mora-Melià & Carlos S. López-Aburto & Pablo Ballesteros-Pérez & Pedro Muñoz-Velasco, 2018. "Viability of Green Roofs as a Flood Mitigation Element in the Central Region of Chile," Sustainability, MDPI, vol. 10(4), pages 1-19, April.
    8. Elena Korol & Natalia Shushunova, 2022. "Analysis and Valuation of the Energy-Efficient Residential Building with Innovative Modular Green Wall Systems," Sustainability, MDPI, vol. 14(11), pages 1-13, June.
    9. Manso, Maria & Teotónio, Inês & Silva, Cristina Matos & Cruz, Carlos Oliveira, 2021. "Green roof and green wall benefits and costs: A review of the quantitative evidence," Renewable and Sustainable Energy Reviews, Elsevier, vol. 135(C).
    10. Mo Wang & Xu Zhong & Chuanhao Sun & Tong Chen & Jin Su & Jianjun Li, 2023. "Comprehensive Performance of Green Infrastructure through a Life-Cycle Perspective: A Review," Sustainability, MDPI, vol. 15(14), pages 1-19, July.
    11. Mithun Hanumesh & Rémy Claverie & Geoffroy Séré, 2021. "A Roof of Greenery, but a Sky of Unexplored Relations—Meta-Analysis of Factors and Properties That Affect Green Roof Hydrological and Thermal Performances," Sustainability, MDPI, vol. 13(18), pages 1-25, September.
    12. Elaouzy, Y. & El Fadar, A., 2022. "Energy, economic and environmental benefits of integrating passive design strategies into buildings: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 167(C).
    13. Patrice Cannavo & Mathieu Artous & Olivier Lemmel & Hervé Buord & Laure Vidal-Beaudet & René Guénon, 2022. "Agronomic Evaluation of Recycled Polyurethane Foam-Based Growing Media for Green Roofs," Sustainability, MDPI, vol. 14(20), pages 1-19, October.
    14. Ileana Blanco & Fabiana Convertino, 2023. "Thermal Performance of Green Façades: Research Trends Analysis Using a Science Mapping Approach," Sustainability, MDPI, vol. 15(13), pages 1-23, June.
    15. Bevilacqua, Piero & Bruno, Roberto & Arcuri, Natale, 2020. "Green roofs in a Mediterranean climate: energy performances based on in-situ experimental data," Renewable Energy, Elsevier, vol. 152(C), pages 1414-1430.
    16. Teotónio, Inês & Oliveira Cruz, Carlos & Matos Silva, Cristina & Lopes, Rodrigo Ferreira Reis, 2023. "Bridging CBA and MCA for evaluating green infrastructure: Proposal of a new evaluation model (MAGICA)," Socio-Economic Planning Sciences, Elsevier, vol. 85(C).
    17. Hashemi, Sajedeh Sadat Ghazizadeh & Mahmud, Hilmi Bin & Ashraf, Muhammad Aqeel, 2015. "Performance of green roofs with respect to water quality and reduction of energy consumption in tropics: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 52(C), pages 669-679.
    18. Flora Silva & Cristina Sousa Coutinho Calheiros & Guilherme Valle & Pedro Pinto & António Albuquerque & Ana Maria Antão-Geraldes, 2023. "Influence of Green Roofs on the Design of a Public Stormwater Drainage System: A Case Study," Sustainability, MDPI, vol. 15(7), pages 1-13, March.
    19. Abdullah Addas, 2023. "Understanding the Relationship between Urban Biophysical Composition and Land Surface Temperature in a Hot Desert Megacity (Saudi Arabia)," IJERPH, MDPI, vol. 20(6), pages 1-16, March.
    20. Susca, T. & Zanghirella, F. & Colasuonno, L. & Del Fatto, V., 2022. "Effect of green wall installation on urban heat island and building energy use: A climate-informed systematic literature review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 159(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jsusta:v:15:y:2023:i:2:p:1064-:d:1027178. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.