IDEAS home Printed from https://ideas.repec.org/a/gam/jsusta/v15y2023i7p5762-d1107586.html
   My bibliography  Save this article

Influence of Green Roofs on the Design of a Public Stormwater Drainage System: A Case Study

Author

Listed:
  • Flora Silva

    (ESTiG, Instituto Politécnico de Bragança, Campus de Santa Apolónia, 5300-253 Bragança, Portugal
    FibEnTech, 6201-001 Covilhã, Portugal
    GeoBioTec-UBI, 6201-001 Covilhã, Portugal)

  • Cristina Sousa Coutinho Calheiros

    (Interdisciplinary Centre of Marine and Environmental Research (CIIMAR/CIMAR), University of Porto, Novo Edifício do Terminal de Cruzeiros do Porto de Leixões, Avenida General Norton de Matos, S/N, 4450-208 Matosinhos, Portugal)

  • Guilherme Valle

    (ESTiG, Instituto Politécnico de Bragança, Campus de Santa Apolónia, 5300-253 Bragança, Portugal
    Universidade Tecnológica Federal do Paraná, Campus Curitiba, Curitiba 80230-000, PR, Brazil)

  • Pedro Pinto

    (Câmara Municipal de Bragança, Forte S. João de Deus, 5300-263 Bragança, Portugal)

  • António Albuquerque

    (FibEnTech, 6201-001 Covilhã, Portugal
    GeoBioTec-UBI, 6201-001 Covilhã, Portugal
    Department of Civil Engineering and Architecture, University of Beira Interior, 6201-001 Covilhã, Portugal)

  • Ana Maria Antão-Geraldes

    (Centro de Investigação de Montanha (CIMO), Instituto Politécnico de Bragança, Campus de Santa Apolónia, 5300-253 Bragança, Portugal
    Laboratório Associado para a Sustentabilidade e Tecnologia em Regiões de Montanha (SusTEC), Instituto Politécnico de Bragança, Campus de Santa Apolónia, 5300-253 Bragança, Portugal)

Abstract

In the face of excessive soil sealing and the occurrence of heavy rainfall in short time periods leading to flooding, it is becoming increasingly urgent to implement public resilient stormwater drainage systems. Green roofs have several advantages at different levels, of which this paper highlights the ability to retain rainwater, to reduce problems with flooding in peaks of rainfall, and to increase in urban green infrastructure with all the benefits associated. In this sense, green roofs’ impact on the design of a public stormwater drainage system and their implications for urban stormwater management was analyzed when compared with conventional roofs. If green roofs are used on the buildings in the study urban area, which has about 2.1 ha and is located in rainfall region B of Portugal, then the weighted average runoff coefficient ( C m ) for the study area is 0.59. This scenario leads to a reduction in the maximum flow rate of 15.89% compared to the use of conventional roofs, with a C m of 0.70 for the same area. Thus, the use of green roofs instead of conventional roofs can have positive impacts on the surface runoff in urban areas and contribute to more sustainable urban drainage.

Suggested Citation

  • Flora Silva & Cristina Sousa Coutinho Calheiros & Guilherme Valle & Pedro Pinto & António Albuquerque & Ana Maria Antão-Geraldes, 2023. "Influence of Green Roofs on the Design of a Public Stormwater Drainage System: A Case Study," Sustainability, MDPI, vol. 15(7), pages 1-13, March.
  • Handle: RePEc:gam:jsusta:v:15:y:2023:i:7:p:5762-:d:1107586
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2071-1050/15/7/5762/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2071-1050/15/7/5762/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Ignacio Andrés-Doménech & Sara Perales-Momparler & Adrián Morales-Torres & Ignacio Escuder-Bueno, 2018. "Hydrological Performance of Green Roofs at Building and City Scales under Mediterranean Conditions," Sustainability, MDPI, vol. 10(9), pages 1-15, August.
    2. Berardi, Umberto & GhaffarianHoseini, AmirHosein & GhaffarianHoseini, Ali, 2014. "State-of-the-art analysis of the environmental benefits of green roofs," Applied Energy, Elsevier, vol. 115(C), pages 411-428.
    3. Musa Akther & Jianxun He & Angus Chu & Jian Huang & Bert Van Duin, 2018. "A Review of Green Roof Applications for Managing Urban Stormwater in Different Climatic Zones," Sustainability, MDPI, vol. 10(8), pages 1-28, August.
    4. Maria Luíza Santos & Cristina Matos Silva & Filipa Ferreira & José Saldanha Matos, 2023. "Hydrological Analysis of Green Roofs Performance under a Mediterranean Climate: A Case Study in Lisbon, Portugal," Sustainability, MDPI, vol. 15(2), pages 1-18, January.
    5. Fernando Barriuso & Beatriz Urbano, 2021. "Green Roofs and Walls Design Intended to Mitigate Climate Change in Urban Areas across All Continents," Sustainability, MDPI, vol. 13(4), pages 1-14, February.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Maria Luíza Santos & Cristina Matos Silva & Filipa Ferreira & José Saldanha Matos, 2023. "Hydrological Analysis of Green Roofs Performance under a Mediterranean Climate: A Case Study in Lisbon, Portugal," Sustainability, MDPI, vol. 15(2), pages 1-18, January.
    2. Fernando Barriuso & Beatriz Urbano, 2020. "Analysis of the Realities, Evolution and Prospects of Urban Greening from an International Point of View," The AMFITEATRU ECONOMIC journal, Academy of Economic Studies - Bucharest, Romania, vol. 22(53), pages 137-137, February.
    3. Fernando Barriuso & Beatriz Urbano, 2021. "Green Roofs and Walls Design Intended to Mitigate Climate Change in Urban Areas across All Continents," Sustainability, MDPI, vol. 13(4), pages 1-14, February.
    4. Yu Chen & Jacopo Gaspari, 2023. "Exploring an Integrated System for Urban Stormwater Management: A Systematic Literature Review of Solutions at Building and District Scales," Sustainability, MDPI, vol. 15(13), pages 1-16, June.
    5. Kinga Kimic & Karina Ostrysz, 2021. "Assessment of Blue and Green Infrastructure Solutions in Shaping Urban Public Spaces—Spatial and Functional, Environmental, and Social Aspects," Sustainability, MDPI, vol. 13(19), pages 1-31, October.
    6. Cavadini, Giovan Battista & Cook, Lauren M., 2021. "Green and cool roof choices integrated into rooftop solar energy modelling," Applied Energy, Elsevier, vol. 296(C).
    7. Jesse Weggemans & Maria Luiza Santos & Filipa Ferreira & Gabriel Duarte Moreno & José Saldanha Matos, 2023. "Modeling the Hydraulic Performance of Pilot Green Roofs Using the Storm Water Management Model: How Important Is Calibration?," Sustainability, MDPI, vol. 15(19), pages 1-16, October.
    8. Abdullah Addas, 2023. "Understanding the Relationship between Urban Biophysical Composition and Land Surface Temperature in a Hot Desert Megacity (Saudi Arabia)," IJERPH, MDPI, vol. 20(6), pages 1-16, March.
    9. Mihalakakou, Giouli & Souliotis, Manolis & Papadaki, Maria & Menounou, Penelope & Dimopoulos, Panayotis & Kolokotsa, Dionysia & Paravantis, John A. & Tsangrassoulis, Aris & Panaras, Giorgos & Giannako, 2023. "Green roofs as a nature-based solution for improving urban sustainability: Progress and perspectives," Renewable and Sustainable Energy Reviews, Elsevier, vol. 180(C).
    10. Brunetti, Giuseppe & Porti, Michele & Piro, Patrizia, 2018. "Multi-level numerical and statistical analysis of the hygrothermal behavior of a non-vegetated green roof in a mediterranean climate," Applied Energy, Elsevier, vol. 221(C), pages 204-219.
    11. Rashidi, Hamidreza & GhaffarianHoseini, Ali & GhaffarianHoseini, Amirhosein & Nik Sulaiman, Nik Meriam & Tookey, John & Hashim, Nur Awanis, 2015. "Application of wastewater treatment in sustainable design of green built environments: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 49(C), pages 845-856.
    12. Margareth Viecco & Sergio Vera & Héctor Jorquera & Waldo Bustamante & Jorge Gironás & Cynnamon Dobbs & Eduardo Leiva, 2018. "Potential of Particle Matter Dry Deposition on Green Roofs and Living Walls Vegetation for Mitigating Urban Atmospheric Pollution in Semiarid Climates," Sustainability, MDPI, vol. 10(7), pages 1-18, July.
    13. Stefano Cascone, 2024. "Eco-Innovative Construction: Integrating Green Roofs Design within the BIM Framework," Sustainability, MDPI, vol. 16(5), pages 1-19, February.
    14. Seyed Mohammad Hossein Zakeri & Amir Mahdiyar, 2020. "The Hindrances to Green Roof Adoption in a Semi-Arid Climate Condition," Sustainability, MDPI, vol. 12(22), pages 1-16, November.
    15. Vijayaraghavan, K., 2016. "Green roofs: A critical review on the role of components, benefits, limitations and trends," Renewable and Sustainable Energy Reviews, Elsevier, vol. 57(C), pages 740-752.
    16. SangHyeok Lee & Donghyun Kim, 2022. "Multidisciplinary Understanding of the Urban Heating Problem and Mitigation: A Conceptual Framework for Urban Planning," IJERPH, MDPI, vol. 19(16), pages 1-15, August.
    17. Andrea Pianella & Lu Aye & Zhengdong Chen & Nicholas S. G. Williams, 2017. "Substrate Depth, Vegetation and Irrigation Affect Green Roof Thermal Performance in a Mediterranean Type Climate," Sustainability, MDPI, vol. 9(8), pages 1-19, August.
    18. Ana M. Bartolome & Deiyalí A. Carpio & Beatriz Urbano, 2022. "Urban Agriculture Digital Planning for the European Union’s Green Deal," The AMFITEATRU ECONOMIC journal, Academy of Economic Studies - Bucharest, Romania, vol. 24(59), pages 159-159.
    19. Kong, Fanhua & Sun, Changfeng & Liu, Fengfeng & Yin, Haiwei & Jiang, Fei & Pu, Yingxia & Cavan, Gina & Skelhorn, Cynthia & Middel, Ariane & Dronova, Iryna, 2016. "Energy saving potential of fragmented green spaces due to their temperature regulating ecosystem services in the summer," Applied Energy, Elsevier, vol. 183(C), pages 1428-1440.
    20. Andrea D’Aniello & Luigi Cimorelli & Luca Cozzolino & Domenico Pianese, 2019. "The Effect of Geological Heterogeneity and Groundwater Table Depth on the Hydraulic Performance of Stormwater Infiltration Facilities," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 33(3), pages 1147-1166, February.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jsusta:v:15:y:2023:i:7:p:5762-:d:1107586. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.