IDEAS home Printed from https://ideas.repec.org/a/gam/jsusta/v15y2023i24p16846-d1300232.html
   My bibliography  Save this article

Interface Optimization of Cu 2 S Nanoparticles by Loading N-Doped Carbon for Efficient Sodium-Ion Storage

Author

Listed:
  • Jinhui Wang

    (Tianjin Key Laboratory of Brine Chemical Engineering and Resource Eco-Utilization, College of Chemical Engineering and Materials Science, Tianjin University of Science and Technology, 13th Avenue 29, TEDA, Tianjin 300457, China
    Key Laboratory for Special Functional Materials of Ministry of Education, National & Local Joint Engineering Research Center for High-Efficiency Display and Lighting Technology, School of Materials Science and Engineering, and Collaborative Innovation Center of Nano Functional Materials and Applications, Henan University, Minglun Street 85, Kaifeng 475004, China
    These authors contributed equally to this work.)

  • Xue Chen

    (Tianjin Key Laboratory of Brine Chemical Engineering and Resource Eco-Utilization, College of Chemical Engineering and Materials Science, Tianjin University of Science and Technology, 13th Avenue 29, TEDA, Tianjin 300457, China
    These authors contributed equally to this work.)

  • Yang Wang

    (Tianjin Key Laboratory of Brine Chemical Engineering and Resource Eco-Utilization, College of Chemical Engineering and Materials Science, Tianjin University of Science and Technology, 13th Avenue 29, TEDA, Tianjin 300457, China)

  • Guiying Tian

    (Tianjin Key Laboratory of Brine Chemical Engineering and Resource Eco-Utilization, College of Chemical Engineering and Materials Science, Tianjin University of Science and Technology, 13th Avenue 29, TEDA, Tianjin 300457, China)

  • Zijian Zhao

    (Tianjin Key Laboratory of Brine Chemical Engineering and Resource Eco-Utilization, College of Chemical Engineering and Materials Science, Tianjin University of Science and Technology, 13th Avenue 29, TEDA, Tianjin 300457, China)

Abstract

Rapid capacity fading and sluggish diffusion kinetics resulting from crystal conversion/powder pulverization hinder practical energy storage application of conversion-type electrodes. To address this issue, we prepared a Cu 2 S/polyelectrolyte/graphene composite (denoted as Cu 2 S/PG) through interfacial optimization by incorporating a polyelectrolyte to enhance the connection between Cu 2 S powders and N-doped graphene. In comparison to CuS and Cu 2 S, the electrochemical performance of Cu 2 S/PG was significantly improved by nanocrystallization and carbon-coating, which delivers a capacity of 317 mAh g –1 at 0.1 A g –1 after 200 cycles. Moreover, we performed real-time analysis of the phase conversion and resistance evolution of the Cu 2 S/PG electrode during Na + insertion/desertion using in situ X-ray diffraction (XRD) and in operando electrochemical impedance spectroscopy (EIS). Thus, the formation of the intermediate phase (Na 2 S 2 ) was firstly discovered, which finally converts to Na 2 S by the end of the sodiation process. In sum, the N-doped carbon/graphene wrapping acts as a protective barrier against electrolyte side reactions, thereby effectively improving the cyclability of the conversion-type Cu 2 S electrodes.

Suggested Citation

  • Jinhui Wang & Xue Chen & Yang Wang & Guiying Tian & Zijian Zhao, 2023. "Interface Optimization of Cu 2 S Nanoparticles by Loading N-Doped Carbon for Efficient Sodium-Ion Storage," Sustainability, MDPI, vol. 15(24), pages 1-12, December.
  • Handle: RePEc:gam:jsusta:v:15:y:2023:i:24:p:16846-:d:1300232
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2071-1050/15/24/16846/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2071-1050/15/24/16846/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. M. Armand & J.-M. Tarascon, 2008. "Building better batteries," Nature, Nature, vol. 451(7179), pages 652-657, February.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Li, Qun & Yin, Longwei & Ma, Jingyun & Li, Zhaoqiang & Zhang, Zhiwei & Chen, Ailian & Li, Caixia, 2015. "Mesoporous silicon/carbon hybrids with ordered pore channel retention and tunable carbon incorporated content as high performance anode materials for lithium-ion batteries," Energy, Elsevier, vol. 85(C), pages 159-166.
    2. Chen, Dongfang & Pan, Lyuming & Pei, Pucheng & Huang, Shangwei & Ren, Peng & Song, Xin, 2021. "Carbon-coated oxygen vacancies-rich Co3O4 nanoarrays grow on nickel foam as efficient bifunctional electrocatalysts for rechargeable zinc-air batteries," Energy, Elsevier, vol. 224(C).
    3. Zhi Chang & Huijun Yang & Xingyu Zhu & Ping He & Haoshen Zhou, 2022. "A stable quasi-solid electrolyte improves the safe operation of highly efficient lithium-metal pouch cells in harsh environments," Nature Communications, Nature, vol. 13(1), pages 1-12, December.
    4. Entwistle, Jake & Ge, Ruihuan & Pardikar, Kunal & Smith, Rachel & Cumming, Denis, 2022. "Carbon binder domain networks and electrical conductivity in lithium-ion battery electrodes: A critical review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 166(C).
    5. Yohwan Choi & Hongseok Kim, 2016. "Optimal Scheduling of Energy Storage System for Self-Sustainable Base Station Operation Considering Battery Wear-Out Cost," Energies, MDPI, vol. 9(6), pages 1-19, June.
    6. Chao Wang & Ming Liu & Michel Thijs & Frans G. B. Ooms & Swapna Ganapathy & Marnix Wagemaker, 2021. "High dielectric barium titanate porous scaffold for efficient Li metal cycling in anode-free cells," Nature Communications, Nature, vol. 12(1), pages 1-11, December.
    7. Navaratnarajah Kuganathan & Efstratia N. Sgourou & Yerassimos Panayiotatos & Alexander Chroneos, 2019. "Defect Process, Dopant Behaviour and Li Ion Mobility in the Li 2 MnO 3 Cathode Material," Energies, MDPI, vol. 12(7), pages 1-11, April.
    8. Jiang, Yunfeng & Xia, Bing & Zhao, Xin & Nguyen, Truong & Mi, Chris & de Callafon, Raymond A., 2017. "Data-based fractional differential models for non-linear dynamic modeling of a lithium-ion battery," Energy, Elsevier, vol. 135(C), pages 171-181.
    9. Lu Zhang & Xiaohua Zhang & Guiying Tian & Qinghua Zhang & Michael Knapp & Helmut Ehrenberg & Gang Chen & Zexiang Shen & Guochun Yang & Lin Gu & Fei Du, 2020. "Lithium lanthanum titanate perovskite as an anode for lithium ion batteries," Nature Communications, Nature, vol. 11(1), pages 1-8, December.
    10. Runlin Wang & Haozhe Zhang & Qiyu Liu & Fu Liu & Xile Han & Xiaoqing Liu & Kaiwei Li & Gaozhi Xiao & Jacques Albert & Xihong Lu & Tuan Guo, 2022. "Operando monitoring of ion activities in aqueous batteries with plasmonic fiber-optic sensors," Nature Communications, Nature, vol. 13(1), pages 1-11, December.
    11. Wu, Xiaoyu & Li, Songmei & Wang, Bo & Liu, Jianhua & Yu, Mei, 2020. "Free-standing 3D network-like cathode based on biomass-derived N-doped carbon/graphene/g-C3N4 hybrid ultrathin sheets as sulfur host for high-rate Li-S battery," Renewable Energy, Elsevier, vol. 158(C), pages 509-519.
    12. Siwu Li & Haolin Zhu & Yuan Liu & Zhilong Han & Linfeng Peng & Shuping Li & Chuang Yu & Shijie Cheng & Jia Xie, 2022. "Codoped porous carbon nanofibres as a potassium metal host for nonaqueous K-ion batteries," Nature Communications, Nature, vol. 13(1), pages 1-13, December.
    13. Odoom-Wubah, Tareque & Rubio, Saúl & Tirado, José L. & Ortiz, Gregorio F. & Akoi, Bior James & Huang, Jiale & Li, Qingbiao, 2020. "Waste Pd/Fish-Collagen as anode for energy storage," Renewable and Sustainable Energy Reviews, Elsevier, vol. 131(C).
    14. Min Xu & Jinjun Qu & Mai Li, 2022. "National Policies, Recent Research Hotspots, and Application of Sustainable Energy: Case of China, USA, and European Countries," Sustainability, MDPI, vol. 14(16), pages 1-30, August.
    15. Freitas Gomes, Icaro Silvestre & Perez, Yannick & Suomalainen, Emilia, 2020. "Coupling small batteries and PV generation: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 126(C).
    16. Zhi Chang & Huijun Yang & Anqiang Pan & Ping He & Haoshen Zhou, 2022. "An improved 9 micron thick separator for a 350 Wh/kg lithium metal rechargeable pouch cell," Nature Communications, Nature, vol. 13(1), pages 1-12, December.
    17. Tao Cheng & Zhongtao Ma & Run Gu & Riming Chen & Yingchun Lyu & Anmin Nie & Bingkun Guo, 2018. "Cracks Formation in Lithium-Rich Cathode Materials for Lithium-Ion Batteries during the Electrochemical Process," Energies, MDPI, vol. 11(10), pages 1-10, October.
    18. Zhu, Xiaoqing & Wang, Zhenpo & Wang, Yituo & Wang, Hsin & Wang, Cong & Tong, Lei & Yi, Mi, 2019. "Overcharge investigation of large format lithium-ion pouch cells with Li(Ni0.6Co0.2Mn0.2)O2 cathode for electric vehicles: Thermal runaway features and safety management method," Energy, Elsevier, vol. 169(C), pages 868-880.
    19. D. D. Girardier & A. Coretti & G. Ciccotti & S. Bonella, 2021. "Mass-Zero constrained dynamics and statistics for the shell model in magnetic field," The European Physical Journal B: Condensed Matter and Complex Systems, Springer;EDP Sciences, vol. 94(8), pages 1-20, August.
    20. Nojan Aliahmad & Pias Kumar Biswas & Hamid Dalir & Mangilal Agarwal, 2022. "Synthesis of V 2 O 5 /Single-Walled Carbon Nanotubes Integrated into Nanostructured Composites as Cathode Materials in High Performance Lithium-Ion Batteries," Energies, MDPI, vol. 15(2), pages 1-16, January.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jsusta:v:15:y:2023:i:24:p:16846-:d:1300232. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.