IDEAS home Printed from https://ideas.repec.org/a/gam/jsusta/v15y2023i24p16750-d1298402.html
   My bibliography  Save this article

Prediction of CO 2 Emissions Related to Energy Consumption for Rural Governance

Author

Listed:
  • Xitao Yu

    (School of Marxism, Beijing Jiaotong University, Beijing 100044, China
    Yantai Institute, China Agricultural University, Yantai 264670, China)

  • Jianhong Cheng

    (Yantai Institute, China Agricultural University, Yantai 264670, China)

  • Liqiong Li

    (Yantai Institute, China Agricultural University, Yantai 264670, China)

Abstract

In the context of rural revitalization, many industries have begun to shift towards rural areas. Industrial agglomeration not only brings economic growth to rural areas, but also increases local carbon emissions. This is particularly evident in some industrialized rural areas with high energy consumption. To accurately implement rural environmental governance, this study selected population, energy consumption, coal proportion, urbanization rate, and other factors as the influencing factors of carbon emissions. The grey correlation analysis method was used to obtain the correlation coefficient of the influencing factors. Then, the relationship between carbon emissions and economic growth, energy consumption, and other influencing factors was analyzed from multiple perspectives. In addition, this study constructed an energy consumption carbon emission prediction model based on deep learning networks, aiming to provide reference data for rural greenhouse gas emission reduction. These results confirmed that the correlation coefficients of the influencing factors of carbon emissions were all higher than 0.6, indicating that their carbon emissions were highly correlated. These test results on the dataset confirm that the RMSE values of the proposed model are all around 0.89, indicating its good prediction accuracy. Therefore, the proposed carbon emission prediction model can provide scientific and reasonable reference data for rural air governance.

Suggested Citation

  • Xitao Yu & Jianhong Cheng & Liqiong Li, 2023. "Prediction of CO 2 Emissions Related to Energy Consumption for Rural Governance," Sustainability, MDPI, vol. 15(24), pages 1-18, December.
  • Handle: RePEc:gam:jsusta:v:15:y:2023:i:24:p:16750-:d:1298402
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2071-1050/15/24/16750/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2071-1050/15/24/16750/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Kangyin Dong & Xiucheng Dong & Qingzhe Jiang, 2020. "How renewable energy consumption lower global CO2 emissions? Evidence from countries with different income levels," The World Economy, Wiley Blackwell, vol. 43(6), pages 1665-1698, June.
    2. Tiangui Lv & Han Hu & Hualin Xie & Xinmin Zhang & Li Wang & Xiaoqiang Shen, 2023. "An empirical relationship between urbanization and carbon emissions in an ecological civilization demonstration area of China based on the STIRPAT model," Environment, Development and Sustainability: A Multidisciplinary Approach to the Theory and Practice of Sustainable Development, Springer, vol. 25(3), pages 2465-2486, March.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Abu Shadate Faisal Mahamude & Wan Sharuzi Wan Harun & Kumaran Kadirgama & Devarajan Ramasamy & Kaniz Farhana & Khalid Saleh & Talal Yusaf, 2022. "Experimental Study on the Efficiency Improvement of Flat Plate Solar Collectors Using Hybrid Nanofluids Graphene/Waste Cotton," Energies, MDPI, vol. 15(7), pages 1, March.
    2. Udemba, Edmund Ntom & Tosun, Merve, 2022. "Moderating effect of institutional policies on energy and technology towards a better environment quality: A two dimensional approach to China's sustainable development," Technological Forecasting and Social Change, Elsevier, vol. 183(C).
    3. Sultan Salem & Noman Arshed & Ahsan Anwar & Mubasher Iqbal & Nyla Sattar, 2021. "Renewable Energy Consumption and Carbon Emissions—Testing Nonlinearity for Highly Carbon Emitting Countries," Sustainability, MDPI, vol. 13(21), pages 1-17, October.
    4. Ibrahiem, Dalia M. & Hanafy, Shaimaa A., 2021. "Do energy security and environmental quality contribute to renewable energy? The role of trade openness and energy use in North African countries," Renewable Energy, Elsevier, vol. 179(C), pages 667-678.
    5. Nchofoung, Tii N. & Asongu, Simplice A., 2022. "Effects of infrastructures on environmental quality contingent on trade openness and governance dynamics in Africa," Renewable Energy, Elsevier, vol. 189(C), pages 152-163.
    6. José Carlos Araújo Amarante & Cássio da Nóbrega Besarria & Helson Gomes de Souza & Otoniel Rodrigues dos Anjos Junior, 2021. "The relationship between economic growth, renewable and nonrenewable energy use and CO2 emissions: empirical evidences for Brazil," Greenhouse Gases: Science and Technology, Blackwell Publishing, vol. 11(3), pages 411-431, June.
    7. Shahzad, Umer & Schneider, Nicolas & Ben Jebli, Mehdi, 2021. "How coal and geothermal energies interact with industrial development and carbon emissions? An autoregressive distributed lags approach to the Philippines," Resources Policy, Elsevier, vol. 74(C).
    8. John A. Jinapor & Shafic Suleman & Richard Stephens Cromwell, 2023. "Energy Consumption and Environmental Quality in Africa: Does Energy Efficiency Make Any Difference?," Sustainability, MDPI, vol. 15(3), pages 1-26, January.
    9. Hassan, Taimoor & Song, Huaming & Khan, Yasir & Kirikkaleli, Dervis, 2022. "Energy efficiency a source of low carbon energy sources? Evidence from 16 high-income OECD economies," Energy, Elsevier, vol. 243(C).
    10. Mahamuda Firoj & Nair Sultana & Sharmina Khanom & Md Harun Ur Rashid & Abeda Sultana, 2023. "Pollution haven hypothesis and the environmental Kuznets curve of Bangladesh: an empirical investigation," Asia-Pacific Journal of Regional Science, Springer, vol. 7(1), pages 197-227, March.
    11. Zhi Wang & Ying Guo & Weiwei Wang & Liumeng Chen & Yongming Sun & Tao Xing & Xiaoying Kong, 2021. "Effect of Biochar Addition on the Microbial Community and Methane Production in the Rapid Degradation Process of Corn Straw," Energies, MDPI, vol. 14(8), pages 1-13, April.
    12. Afshan, Sahar & Ozturk, Ilhan & Yaqoob, Tanzeela, 2022. "Facilitating renewable energy transition, ecological innovations and stringent environmental policies to improve ecological sustainability: Evidence from MM-QR method," Renewable Energy, Elsevier, vol. 196(C), pages 151-160.
    13. Zhao, Congyu & Wang, Kun & Dong, Xiucheng & Dong, Kangyin, 2022. "Is smart transportation associated with reduced carbon emissions? The case of China," Energy Economics, Elsevier, vol. 105(C).
    14. Zhao, Jun & Dong, Kangyin & Dong, Xiucheng & Shahbaz, Muhammad & Kyriakou, Ioannis, 2022. "Is green growth affected by financial risks? New global evidence from asymmetric and heterogeneous analysis," Energy Economics, Elsevier, vol. 113(C).
    15. Le, Thanh Ha, 2022. "Connectedness between nonrenewable and renewable energy consumption, economic growth and CO2 emission in Vietnam: New evidence from a wavelet analysis," Renewable Energy, Elsevier, vol. 195(C), pages 442-454.
    16. Sun, Yunpeng & Li, Haoning & Andlib, Zubaria & Genie, Mesfin G., 2022. "How do renewable energy and urbanization cause carbon emissions? Evidence from advanced panel estimation techniques," Renewable Energy, Elsevier, vol. 185(C), pages 996-1005.
    17. Ma, Qiang & Murshed, Muntasir & Khan, Zeeshan, 2021. "The nexuses between energy investments, technological innovations, emission taxes, and carbon emissions in China," Energy Policy, Elsevier, vol. 155(C).
    18. Ming Meng & Wei Shang & Xinfang Wang & Tingting Pang, 2020. "When will China fulfill its carbon‐related intended nationally determined contributions? An in‐depth environmental Kuznets curve analysis," Greenhouse Gases: Science and Technology, Blackwell Publishing, vol. 10(5), pages 1039-1049, October.
    19. Umar, Muhammad & Mirza, Nawazish & Hasnaoui, Jamila Abaidi & Rochoń, Małgorzata Porada, 2022. "The nexus of carbon emissions, oil price volatility, and human capital efficiency," Resources Policy, Elsevier, vol. 78(C).
    20. Liu, Ying & Lin, Boqiang & Xu, Bin, 2021. "Modeling the impact of energy abundance on economic growth and CO2 emissions by quantile regression: Evidence from China," Energy, Elsevier, vol. 227(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jsusta:v:15:y:2023:i:24:p:16750-:d:1298402. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.