IDEAS home Printed from https://ideas.repec.org/a/gam/jsusta/v15y2023i23p16352-d1289025.html
   My bibliography  Save this article

Optimal Design and Parameter Estimation for Small Solar Heating and Cooling Systems

Author

Listed:
  • Mooyoung Yoo

    (Department of Architectural Engineering, Daejin University, Pocheon 11159, Republic of Korea)

Abstract

The use of solar heating and cooling systems has evolved from being limited to heating and hot water systems in the past to an increasing application in cooling systems. Furthermore, the efficiency optimization of solar heating and cooling systems is crucial in their design and control. This study aimed to enhance the overall efficiency of a solar heating and cooling system through simulations based on optimal design parameters. Additionally, simulations were conducted to optimize the control system to improve the efficiency of the entire solar heating and cooling system. The framework for control optimization can be summarized as follows: (1) modeling the components of the solar heating and cooling system using the Modelica language; (2) establishing baseline efficiencies for the solar heating and cooling system throughout the year; and (3) implementing a control logic, such as Fuzzy or proportional-integral-derivative (PID), within the system components. The resulting optimal control strategy for the solar heating and cooling system led to a maximum increase in the overall system efficiency of approximately 12% during a week of summer design days, reducing the energy consumption from 696.89 kWh to 556.12 kWh. This demonstrates that the developed parameters and control logic improved the overall system performance and achieved efficiency optimization.

Suggested Citation

  • Mooyoung Yoo, 2023. "Optimal Design and Parameter Estimation for Small Solar Heating and Cooling Systems," Sustainability, MDPI, vol. 15(23), pages 1-16, November.
  • Handle: RePEc:gam:jsusta:v:15:y:2023:i:23:p:16352-:d:1289025
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2071-1050/15/23/16352/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2071-1050/15/23/16352/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Meyers, Steven & Schmitt, Bastian & Vajen, Klaus, 2018. "Renewable process heat from solar thermal and photovoltaics: The development and application of a universal methodology to determine the more economical technology," Applied Energy, Elsevier, vol. 212(C), pages 1537-1552.
    2. Andrés Villarruel-Jaramillo & Manuel Pérez-García & José M. Cardemil & Rodrigo A. Escobar, 2021. "Review of Polygeneration Schemes with Solar Cooling Technologies and Potential Industrial Applications," Energies, MDPI, vol. 14(20), pages 1-30, October.
    3. Holler, Stefan & Winkelmann, Adrian & Pelda, Johannes & Salaymeh, Abdulraheem, 2021. "Feasibility study on solar thermal process heat in the beverage industry," Energy, Elsevier, vol. 233(C).
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Josué F. Rosales-Pérez & Andrés Villarruel-Jaramillo & José A. Romero-Ramos & Manuel Pérez-García & José M. Cardemil & Rodrigo Escobar, 2023. "Hybrid System of Photovoltaic and Solar Thermal Technologies for Industrial Process Heat," Energies, MDPI, vol. 16(5), pages 1-45, February.
    2. Hertel, Julian D. & Canals, Vincent & Pujol-Nadal, Ramón, 2020. "On-site optical characterization of large-scale solar collectors through ray-tracing optimization," Applied Energy, Elsevier, vol. 262(C).
    3. Junaid Ahmed & Laveet Kumar & Abdul Fatah Abbasi & Mamdouh El Haj Assad, 2022. "Energy, Exergy, Environmental and Economic Analysis (4e) of a Solar Thermal System for Process Heating in Jamshoro, Pakistan," Energies, MDPI, vol. 15(22), pages 1-18, November.
    4. Dino, Giuseppe E. & Palomba, Valeria & Nowak, Eliza & Frazzica, Andrea, 2021. "Experimental characterization of an innovative hybrid thermal-electric chiller for industrial cooling and refrigeration application," Applied Energy, Elsevier, vol. 281(C).
    5. Hadi Tannous & Valentina Stojceska & Savas A. Tassou, 2023. "The Use of Solar Thermal Heating in SPIRE and Non-SPIRE Industrial Processes," Sustainability, MDPI, vol. 15(10), pages 1-18, May.
    6. Golmohamadi, Hessam, 2022. "Demand-side management in industrial sector: A review of heavy industries," Renewable and Sustainable Energy Reviews, Elsevier, vol. 156(C).
    7. Rastinejad, Justin & Putnam, Sloane & Stuber, Matthew D., 2023. "Technoeconomic assessment of solar technologies for the hybridization of industrial process heat systems using deterministic global dynamic optimization," Renewable Energy, Elsevier, vol. 216(C).
    8. Luis Gabriel Gesteira & Javier Uche, 2022. "A Novel Polygeneration System Based on a Solar-Assisted Desiccant Cooling System for Residential Buildings: An Energy and Environmental Analysis," Sustainability, MDPI, vol. 14(6), pages 1-18, March.
    9. Zhu, Rui & Cheng, Cheng & Santi, Paolo & Chen, Min & Zhang, Xiaohu & Mazzarello, Martina & Wong, Man Sing & Ratti, Carlo, 2022. "Optimization of photovoltaic provision in a three-dimensional city using real-time electricity demand," Applied Energy, Elsevier, vol. 316(C).
    10. Andrés Villarruel-Jaramillo & Josué F. Rosales-Pérez & Manuel Pérez-García & José M. Cardemil & Rodrigo Escobar, 2023. "Modeling and Performance Evaluation of Hybrid Solar Cooling Systems Driven by Photovoltaic and Solar Thermal Collectors—Case Study: Greenhouses of Andalusia," Energies, MDPI, vol. 16(13), pages 1-28, June.
    11. Luis Cámara-Díaz & José Ramírez-Faz & Rafael López-Luque & Francisco José Casares, 2021. "A Cost-Effective and Efficient Electronic Design for Photovoltaic Systems for Solar Hot Water Production," Sustainability, MDPI, vol. 13(18), pages 1-21, September.
    12. Schoeneberger, Carrie A. & McMillan, Colin A. & Kurup, Parthiv & Akar, Sertac & Margolis, Robert & Masanet, Eric, 2020. "Solar for industrial process heat: A review of technologies, analysis approaches, and potential applications in the United States," Energy, Elsevier, vol. 206(C).

    More about this item

    Keywords

    COP; SHC; Modelica language; fuzzy; PID;
    All these keywords.

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jsusta:v:15:y:2023:i:23:p:16352-:d:1289025. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.