IDEAS home Printed from https://ideas.repec.org/a/gam/jsusta/v15y2023i20p14958-d1261277.html
   My bibliography  Save this article

Research on Water Stability and Moisture Damage Mechanism of a Steel Slag Porous Asphalt Mixture

Author

Listed:
  • Xiaobing Chen

    (School of Transportation, Southeast University, Nanjing 211189, China
    Architects and Engineers Co., Ltd., Southeast University, Nanjing 210096, China)

  • Miao Zhang

    (School of Transportation, Southeast University, Nanjing 211189, China)

  • Jianming Yao

    (Suzhou Jiaotou Construction Management Co., Ltd., Suzhou 215007, China)

  • Xiaofei Zhang

    (Kunshan Traffic Development Holdings Group Co., Ltd., Suzhou 215300, China)

  • Wei Wen

    (Jiangsu Sinoroad Transportation Science and Technology Co., Ltd., Nanjing 211800, China)

  • Jinhai Yin

    (Suzhou Sanchuang Pavement Engineering Co., Ltd., Suzhou 215124, China)

  • Zhongshan Liang

    (Suzhou Sanchuang Pavement Engineering Co., Ltd., Suzhou 215124, China)

Abstract

A steel slag porous asphalt (SSPA) mixture, as the surfacing layer of permeable asphalt pavements, not only ensures the pavement surface drainage and noise reduction functions, but also improves the comprehensive utilization of steel slag resources and the inherent protection of the ecological environment. However, compared with ordinary asphalt mixtures, SSPA is more susceptible to water damage, such as scouring and frost swelling caused by external rainwater intrusion, resulting in the deterioration of the pavement performance. Therefore, it is of good practical imperative to study the water stability and moisture damage mechanism of SSPAs. In this study, the water stability of SSPA, that was subjected to a series of time–temperature H 2 O-immersion schemes, was investigated using the pull-out and H 2 O-immersion Marshall tests, whilst the microscopic mechanism of moisture damage was studied using the scanning electron microscopy (SEM), Fourier infrared spectroscopy (FTIR), and X-ray diffraction (XRD) tests. The corresponding results showed that: (a) with the increase in the H 2 O immersion time, the water stability of SSPA first increased and then decreased; and (b) the water stability of SSPA was strong under medium-temperature H 2 O-immersion or short-term high-temperature H 2 O-immersion. SEM, on the other hand, showed that the transition zone spacing was closely related to the chemical adhesion mechanism between the asphalt and steel slag aggregate. Additionally, the FTIR analysis further showed that the steel slag asphalt mastic spectra had new absorption peaks at 3200~3750 cm −1 , inherently indicating the existence of chemical bonding between the asphalt and steel slag, with the XRD results showing that CaSO 4 ·2H 2 O had a beneficial effect on the water stability of SSPA.

Suggested Citation

  • Xiaobing Chen & Miao Zhang & Jianming Yao & Xiaofei Zhang & Wei Wen & Jinhai Yin & Zhongshan Liang, 2023. "Research on Water Stability and Moisture Damage Mechanism of a Steel Slag Porous Asphalt Mixture," Sustainability, MDPI, vol. 15(20), pages 1-23, October.
  • Handle: RePEc:gam:jsusta:v:15:y:2023:i:20:p:14958-:d:1261277
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2071-1050/15/20/14958/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2071-1050/15/20/14958/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Hanbing Liu & Bing Zhu & Haibin Wei & Chao Chai & Yu Chen, 2019. "Laboratory Evaluation on the Performance of Porous Asphalt Mixture with Steel Slag for Seasonal Frozen Regions," Sustainability, MDPI, vol. 11(24), pages 1-17, December.
    2. Lubinda F. Walubita & Gilberto Martinez-Arguelles & Rodrigo Polo-Mendoza & Sang Ick-Lee & Luis Fuentes, 2022. "Comparative Environmental Assessment of Rigid, Flexible, and Perpetual Pavements: A Case Study of Texas," Sustainability, MDPI, vol. 14(16), pages 1-22, August.
    3. Huimin Liu & Qiqiang Li & Guanguan Li & Ran Ding, 2020. "Life Cycle Assessment of Environmental Impact of Steelmaking Process," Complexity, Hindawi, vol. 2020, pages 1-9, December.
    4. Lubinda F. Walubita & Dagbegnon Clement Sohoulande Djebou & Abu N. M. Faruk & Sang Ick Lee & Samer Dessouky & Xiaodi Hu, 2018. "Prospective of Societal and Environmental Benefits of Piezoelectric Technology in Road Energy Harvesting," Sustainability, MDPI, vol. 10(2), pages 1-13, February.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Chao Chai & Yong-Chun Cheng & Yuwei Zhang & Yu Chen & Bing Zhu, 2020. "Experimental Study on the Performance Decay of Permeable Asphalt Mixture in Seasonally Frozen Regions under Freeze-Thaw Cycles," Sustainability, MDPI, vol. 12(7), pages 1-13, April.
    2. Tahami, Seyed Amid & Gholikhani, Mohammadreza & Nasouri, Reza & Dessouky, Samer & Papagiannakis, A.T., 2019. "Developing a new thermoelectric approach for energy harvesting from asphalt pavements," Applied Energy, Elsevier, vol. 238(C), pages 786-795.
    3. Doaa Al-Yafeai & Tariq Darabseh & Abdel-Hamid I. Mourad, 2020. "A State-Of-The-Art Review of Car Suspension-Based Piezoelectric Energy Harvesting Systems," Energies, MDPI, vol. 13(9), pages 1-39, May.
    4. Enmao Quan & Hongke Xu & Zhongyang Sun, 2022. "Composition Optimization and Damping Performance Evaluation of Porous Asphalt Mixture Containing Recycled Crumb Rubber," Sustainability, MDPI, vol. 14(5), pages 1-20, February.
    5. Mengyao Lyu & Som V. Thomas & Heng Wei & Julian Wang & Tiina A. Reponen & Patrick H. Ryan & Donglu Shi, 2022. "Entrapment of Airborne Particles via Simulated Highway Noise-Induced Piezoelectricity in PMMA and EPDM," Energies, MDPI, vol. 15(14), pages 1-13, July.
    6. Yongchun Cheng & Chao Chai & Yuwei Zhang & Yu Chen & Bing Zhu, 2019. "A New Eco-Friendly Porous Asphalt Mixture Modified by Crumb Rubber and Basalt Fiber," Sustainability, MDPI, vol. 11(20), pages 1-21, October.
    7. Lubinda F. Walubita & Abu N. M. Faruk & Jerome Helffrich & Samer Dessouky & Luckson Kamisa & Hossein Roshani & Arturo Montoya, 2022. "The Quest for Renewable Energy—Effects of Different Asphalt Mixes and Laboratory Loading on Piezoelectric Energy Harvesters," Energies, MDPI, vol. 16(1), pages 1-18, December.
    8. Gholikhani, Mohammadreza & Nasouri, Reza & Tahami, Seyed Amid & Legette, Sarah & Dessouky, Samer & Montoya, Arturo, 2019. "Harvesting kinetic energy from roadway pavement through an electromagnetic speed bump," Applied Energy, Elsevier, vol. 250(C), pages 503-511.
    9. Oquendo-Di Cosola, V. & Olivieri, F. & Ruiz-García, L., 2022. "A systematic review of the impact of green walls on urban comfort: temperature reduction and noise attenuation," Renewable and Sustainable Energy Reviews, Elsevier, vol. 162(C).
    10. Moon, Saedaseul & Lee, Deok-Joo, 2019. "An optimal electric vehicle investment model for consumers using total cost of ownership: A real option approach," Applied Energy, Elsevier, vol. 253(C), pages 1-1.
    11. Li, Jian & Jiao, Liguo & Tao, Junyu & Chen, Guanyi & Hu, Jianli & Yan, Beibei & Mansour, Mohy & Guo, Yaoyu & Ye, Peiwen & Ding, Zheng & Yu, Tianxiao, 2020. "Can microwave treat biomass tar? A comprehensive study based on experimental and net energy analysis," Applied Energy, Elsevier, vol. 272(C).
    12. Mohammadreza Gholikhani & Seyed Amid Tahami & Mohammadreza Khalili & Samer Dessouky, 2019. "Electromagnetic Energy Harvesting Technology: Key to Sustainability in Transportation Systems," Sustainability, MDPI, vol. 11(18), pages 1-18, September.
    13. Hongju Da & Degang Xu & Jufeng Li & Zhihe Tang & Jiaxin Li & Chen Wang & Hui Luan & Fang Zhang & Yong Zeng, 2023. "Influencing Factors of Carbon Emission from Typical Refining Units: Identification, Analysis, and Mitigation Potential," Energies, MDPI, vol. 16(18), pages 1-17, September.
    14. Sara M. Andrés-Vizán & Joaquín M. Villanueva-Balsera & J. Valeriano Álvarez-Cabal & Gemma M. Martínez-Huerta, 2020. "Classification of BOF Slag by Data Mining Techniques According to Chemical Composition," Sustainability, MDPI, vol. 12(8), pages 1-10, April.
    15. Yangsen Cao & Aimin Sha & Zhuangzhuang Liu & Fan Zhang & Jiarong Li & Hai Liu, 2022. "Thermal Conductivity Evaluation and Road Performance Test of Steel Slag Asphalt Mixture," Sustainability, MDPI, vol. 14(12), pages 1-19, June.
    16. Ebrahim Hamid Hussein Al-Qadami & Zahiraniza Mustaffa & Mohamed E. Al-Atroush, 2022. "Evaluation of the Pavement Geothermal Energy Harvesting Technologies towards Sustainability and Renewable Energy," Energies, MDPI, vol. 15(3), pages 1-26, February.
    17. Khalili, Mohamadreza & Biten, Ayetullah B. & Vishwakarma, Gopal & Ahmed, Sara & Papagiannakis, A.T., 2019. "Electro-mechanical characterization of a piezoelectric energy harvester," Applied Energy, Elsevier, vol. 253(C), pages 1-1.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jsusta:v:15:y:2023:i:20:p:14958-:d:1261277. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.