IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v15y2022i14p4935-d856551.html
   My bibliography  Save this article

Entrapment of Airborne Particles via Simulated Highway Noise-Induced Piezoelectricity in PMMA and EPDM

Author

Listed:
  • Mengyao Lyu

    (The Materials Science and Engineering Program, Department of Mechanical and Materials Engineering, College of Engineering and Applied Science, University of Cincinnati, Cincinnati, OH 45221, USA)

  • Som V. Thomas

    (The Materials Science and Engineering Program, Department of Mechanical and Materials Engineering, College of Engineering and Applied Science, University of Cincinnati, Cincinnati, OH 45221, USA)

  • Heng Wei

    (Department of Civil & Transportation Engineering, College of Engineering and Applied Science, University of Cincinnati, Cincinnati, OH 45221, USA)

  • Julian Wang

    (Architectural Engineering, Penn State University, State College, PA 16801, USA)

  • Tiina A. Reponen

    (Environmental & Public Health Sciences, Medical School, University of Cincinnati, Cincinnati, OH 45221, USA)

  • Patrick H. Ryan

    (Environmental & Public Health Sciences, Medical School, University of Cincinnati, Cincinnati, OH 45221, USA
    Department of Pediatrics, University of Cincinnati College of Medicine, Cincinnati, OH 45221, USA
    Division of Biostatistics and Epidemiology, Cincinnati Children’s Hospital Medical Center, Cincinnati, OH 45229, USA)

  • Donglu Shi

    (The Materials Science and Engineering Program, Department of Mechanical and Materials Engineering, College of Engineering and Applied Science, University of Cincinnati, Cincinnati, OH 45221, USA)

Abstract

The US highway system features a huge flux of energy transportation in terms of weight, speed, volume, flow density, and noise levels, with accompanying environmental effects. The adverse effects of high-volume traffic cause health concerns for nearby residential areas. Both chronic and acute exposure to PM 2.5 have detrimental effects on respiratory and cardiovascular health, and motor vehicles contribute 25–35% of direct PM 2.5 emissions. In addition to traffic-related pollutants, residing near major roadways is also associated with exposure to increased noise, and both affect the health and quality of life of residents. While regulatory and policy actions may reduce some exposures, engineering means may offer novel and significant methods to address these critical health and environmental issues. The goal of this study was to harvest highway-noise energy to induce surface charge via a piezoelectric material to entrap airborne particles, including PM 2.5. In this study, we experimentally investigated the piezoelectric effect of a polymethyl methacrylate (PMMA) sheet and ethylene propylene diene monomer (EPDM) rubber foam on the entrapment of copper (II)-2,4 pentanedione powder (Cu II powder). Appreciable voltages were induced on the surfaces of the PMMA via mechanical vibrations, leading to the effective entrapment of the Cu II powder. The EPDM rubber foam was found to attract a large amount of Cu II powder under simulated highway noise in a wide range, of 30–70 dB, and at frequencies of 700–1300 Hz, generated by using a loudspeaker. The amount of Cu II powder entrapped on the EPDM rubber-foam surfaces was found to scale with the SPL, but was independent of frequency. The experimental findings from this research provide a valuable base for the design of a robust piezoelectric system that is self-powered by harvesting the wasted sound energy from highway noise and reduces the amount of airborne particles over highways for effective environmental control.

Suggested Citation

  • Mengyao Lyu & Som V. Thomas & Heng Wei & Julian Wang & Tiina A. Reponen & Patrick H. Ryan & Donglu Shi, 2022. "Entrapment of Airborne Particles via Simulated Highway Noise-Induced Piezoelectricity in PMMA and EPDM," Energies, MDPI, vol. 15(14), pages 1-13, July.
  • Handle: RePEc:gam:jeners:v:15:y:2022:i:14:p:4935-:d:856551
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/15/14/4935/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/15/14/4935/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Lubinda F. Walubita & Dagbegnon Clement Sohoulande Djebou & Abu N. M. Faruk & Sang Ick Lee & Samer Dessouky & Xiaodi Hu, 2018. "Prospective of Societal and Environmental Benefits of Piezoelectric Technology in Road Energy Harvesting," Sustainability, MDPI, vol. 10(2), pages 1-13, February.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Tahami, Seyed Amid & Gholikhani, Mohammadreza & Nasouri, Reza & Dessouky, Samer & Papagiannakis, A.T., 2019. "Developing a new thermoelectric approach for energy harvesting from asphalt pavements," Applied Energy, Elsevier, vol. 238(C), pages 786-795.
    2. Doaa Al-Yafeai & Tariq Darabseh & Abdel-Hamid I. Mourad, 2020. "A State-Of-The-Art Review of Car Suspension-Based Piezoelectric Energy Harvesting Systems," Energies, MDPI, vol. 13(9), pages 1-39, May.
    3. Enmao Quan & Hongke Xu & Zhongyang Sun, 2022. "Composition Optimization and Damping Performance Evaluation of Porous Asphalt Mixture Containing Recycled Crumb Rubber," Sustainability, MDPI, vol. 14(5), pages 1-20, February.
    4. Lubinda F. Walubita & Abu N. M. Faruk & Jerome Helffrich & Samer Dessouky & Luckson Kamisa & Hossein Roshani & Arturo Montoya, 2022. "The Quest for Renewable Energy—Effects of Different Asphalt Mixes and Laboratory Loading on Piezoelectric Energy Harvesters," Energies, MDPI, vol. 16(1), pages 1-18, December.
    5. Gholikhani, Mohammadreza & Nasouri, Reza & Tahami, Seyed Amid & Legette, Sarah & Dessouky, Samer & Montoya, Arturo, 2019. "Harvesting kinetic energy from roadway pavement through an electromagnetic speed bump," Applied Energy, Elsevier, vol. 250(C), pages 503-511.
    6. Moon, Saedaseul & Lee, Deok-Joo, 2019. "An optimal electric vehicle investment model for consumers using total cost of ownership: A real option approach," Applied Energy, Elsevier, vol. 253(C), pages 1-1.
    7. Li, Jian & Jiao, Liguo & Tao, Junyu & Chen, Guanyi & Hu, Jianli & Yan, Beibei & Mansour, Mohy & Guo, Yaoyu & Ye, Peiwen & Ding, Zheng & Yu, Tianxiao, 2020. "Can microwave treat biomass tar? A comprehensive study based on experimental and net energy analysis," Applied Energy, Elsevier, vol. 272(C).
    8. Mohammadreza Gholikhani & Seyed Amid Tahami & Mohammadreza Khalili & Samer Dessouky, 2019. "Electromagnetic Energy Harvesting Technology: Key to Sustainability in Transportation Systems," Sustainability, MDPI, vol. 11(18), pages 1-18, September.
    9. Ebrahim Hamid Hussein Al-Qadami & Zahiraniza Mustaffa & Mohamed E. Al-Atroush, 2022. "Evaluation of the Pavement Geothermal Energy Harvesting Technologies towards Sustainability and Renewable Energy," Energies, MDPI, vol. 15(3), pages 1-26, February.
    10. Khalili, Mohamadreza & Biten, Ayetullah B. & Vishwakarma, Gopal & Ahmed, Sara & Papagiannakis, A.T., 2019. "Electro-mechanical characterization of a piezoelectric energy harvester," Applied Energy, Elsevier, vol. 253(C), pages 1-1.
    11. Xiaobing Chen & Miao Zhang & Jianming Yao & Xiaofei Zhang & Wei Wen & Jinhai Yin & Zhongshan Liang, 2023. "Research on Water Stability and Moisture Damage Mechanism of a Steel Slag Porous Asphalt Mixture," Sustainability, MDPI, vol. 15(20), pages 1-23, October.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:15:y:2022:i:14:p:4935-:d:856551. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.