IDEAS home Printed from https://ideas.repec.org/a/gam/jsusta/v15y2023i1p890-d1024291.html
   My bibliography  Save this article

Optimization of Ecological and Economic Aspects of the Construction Schedule with the Use of Metaheuristic Algorithms and Artificial Intelligence

Author

Listed:
  • Janusz Kulejewski

    (Civil Engineering Faculty, Warsaw University of Technology, Armii Ludowej 16, 00-637 Warszawa, Poland)

  • Jerzy Rosłon

    (Civil Engineering Faculty, Warsaw University of Technology, Armii Ludowej 16, 00-637 Warszawa, Poland)

Abstract

Construction projects play a vital role in shaping the built environment and have a significant impact on the natural environment and economies around the world. The decisions made during the planning and execution stages of a project can have long-lasting implications for its environmental and economic performance. It is, therefore, essential to consider these factors carefully and make informed decisions that align with sustainable development goals. One way to achieve this is by using metaheuristic algorithms and artificial intelligence tools to optimize and reconcile sustainable development and economic parameters in construction project scheduling. By doing so, one can improve the overall efficiency and effectiveness of the construction process, while also contributing to the well-being of the communities in which these projects are located. In this article, authors propose a new ecological indicator that can be used to evaluate the sustainability of construction projects and provide a case study to illustrate its application. The authors’ findings and conclusions highlight the importance of using advanced analytical techniques to optimize the sustainability and economic performance of construction projects and suggest potential avenues for future research.

Suggested Citation

  • Janusz Kulejewski & Jerzy Rosłon, 2023. "Optimization of Ecological and Economic Aspects of the Construction Schedule with the Use of Metaheuristic Algorithms and Artificial Intelligence," Sustainability, MDPI, vol. 15(1), pages 1-26, January.
  • Handle: RePEc:gam:jsusta:v:15:y:2023:i:1:p:890-:d:1024291
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2071-1050/15/1/890/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2071-1050/15/1/890/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Bohringer, Christoph & Jochem, Patrick E.P., 2007. "Measuring the immeasurable -- A survey of sustainability indices," Ecological Economics, Elsevier, vol. 63(1), pages 1-8, June.
    2. A. Alan B. Pritsker & Lawrence J. Waiters & Philip M. Wolfe, 1969. "Multiproject Scheduling with Limited Resources: A Zero-One Programming Approach," Management Science, INFORMS, vol. 16(1), pages 93-108, September.
    3. Van Peteghem, Vincent & Vanhoucke, Mario, 2014. "An experimental investigation of metaheuristics for the multi-mode resource-constrained project scheduling problem on new dataset instances," European Journal of Operational Research, Elsevier, vol. 235(1), pages 62-72.
    4. F. Brian Talbot, 1982. "Resource-Constrained Project Scheduling with Time-Resource Tradeoffs: The Nonpreemptive Case," Management Science, INFORMS, vol. 28(10), pages 1197-1210, October.
    5. Marinella Giunta & Dario Lo Bosco & Giovanni Leonardi & Francesco Scopelliti, 2019. "Estimation of Gas and Dust Emissions in Construction Sites of a Motorway Project," Sustainability, MDPI, vol. 11(24), pages 1-14, December.
    6. Jerzy Rosłon & Mariola Książek-Nowak & Paweł Nowak, 2020. "Schedules Optimization with the Use of Value Engineering and NPV Maximization," Sustainability, MDPI, vol. 12(18), pages 1-20, September.
    7. Jerzy Rosłon & Mariola Książek-Nowak & Paweł Nowak & Jacek Zawistowski, 2020. "Cash-Flow Schedules Optimization within Life Cycle Costing (LCC)," Sustainability, MDPI, vol. 12(19), pages 1-14, October.
    8. Mark Hostetler, 2010. "Beyond Design: The Importance of Construction and Post-Construction Phases in Green Developments," Sustainability, MDPI, vol. 2(4), pages 1-10, April.
    9. Klaus Böde & Agata Różycka & Paweł Nowak, 2020. "Development of a Pragmatic IT Concept for a Construction Company," Sustainability, MDPI, vol. 12(17), pages 1-17, September.
    10. Neil J. Hime & Guy B. Marks & Christine T. Cowie, 2018. "A Comparison of the Health Effects of Ambient Particulate Matter Air Pollution from Five Emission Sources," IJERPH, MDPI, vol. 15(6), pages 1-24, June.
    11. Kolisch, Rainer & Sprecher, Arno, 1997. "PSPLIB - A project scheduling problem library : OR Software - ORSEP Operations Research Software Exchange Program," European Journal of Operational Research, Elsevier, vol. 96(1), pages 205-216, January.
    12. Agnieszka Leśniak & Krzysztof Zima, 2018. "Cost Calculation of Construction Projects Including Sustainability Factors Using the Case Based Reasoning (CBR) Method," Sustainability, MDPI, vol. 10(5), pages 1-14, May.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Ke Wang & Ziyi Ying & Shankha Shubhra Goswami & Yongsheng Yin & Yafei Zhao, 2023. "Investigating the Role of Artificial Intelligence Technologies in the Construction Industry Using a Delphi-ANP-TOPSIS Hybrid MCDM Concept under a Fuzzy Environment," Sustainability, MDPI, vol. 15(15), pages 1-42, August.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Luis F. Machado-Domínguez & Carlos D. Paternina-Arboleda & Jorge I. Vélez & Agustin Barrios-Sarmiento, 2021. "A memetic algorithm to address the multi-node resource-constrained project scheduling problem," Journal of Scheduling, Springer, vol. 24(4), pages 413-429, August.
    2. Ripon K. Chakrabortty & Ruhul A. Sarker & Daryl L. Essam, 2020. "Single mode resource constrained project scheduling with unreliable resources," Operational Research, Springer, vol. 20(3), pages 1369-1403, September.
    3. Alfredo S. Ramos & Pablo A. Miranda-Gonzalez & Samuel Nucamendi-Guillén & Elias Olivares-Benitez, 2023. "A Formulation for the Stochastic Multi-Mode Resource-Constrained Project Scheduling Problem Solved with a Multi-Start Iterated Local Search Metaheuristic," Mathematics, MDPI, vol. 11(2), pages 1-25, January.
    4. Ben Issa, Samer & Patterson, Raymond A. & Tu, Yiliu, 2021. "Solving resource-constrained multi-project environment under different activity assumptions," International Journal of Production Economics, Elsevier, vol. 232(C).
    5. Kellenbrink, Carolin & Helber, Stefan, 2015. "Scheduling resource-constrained projects with a flexible project structure," European Journal of Operational Research, Elsevier, vol. 246(2), pages 379-391.
    6. Dayal Madhukar & Verma, Sanjay, 2014. "Breadth-first and Best-first Exact Procedures for Regular Measures of the Multi-mode RCPSP," IIMA Working Papers WP2014-10-04, Indian Institute of Management Ahmedabad, Research and Publication Department.
    7. Janusz Kulejewski & Nabi Ibadov & Jerzy Rosłon & Jacek Zawistowski, 2021. "Cash Flow Optimization for Renewable Energy Construction Projects with a New Approach to Critical Chain Scheduling," Energies, MDPI, vol. 14(18), pages 1-15, September.
    8. Arkhipov, Dmitry & Battaïa, Olga & Lazarev, Alexander, 2019. "An efficient pseudo-polynomial algorithm for finding a lower bound on the makespan for the Resource Constrained Project Scheduling Problem," European Journal of Operational Research, Elsevier, vol. 275(1), pages 35-44.
    9. Tom Rihm & Norbert Trautmann & Adrian Zimmermann, 2018. "MIP formulations for an application of project scheduling in human resource management," Flexible Services and Manufacturing Journal, Springer, vol. 30(4), pages 609-639, December.
    10. Gómez Sánchez, Mariam & Lalla-Ruiz, Eduardo & Fernández Gil, Alejandro & Castro, Carlos & Voß, Stefan, 2023. "Resource-constrained multi-project scheduling problem: A survey," European Journal of Operational Research, Elsevier, vol. 309(3), pages 958-976.
    11. Behrad Barghi & Shahram Shadrokh Sikari, 2022. "Meta-heuristic Solution with Considering Setup Time for Multi-Skilled Project Scheduling Problem," SN Operations Research Forum, Springer, vol. 3(1), pages 1-23, March.
    12. Van Eynde, Rob & Vanhoucke, Mario, 2022. "New summary measures and datasets for the multi-project scheduling problem," European Journal of Operational Research, Elsevier, vol. 299(3), pages 853-868.
    13. Vanhoucke, Mario & Coelho, José, 2016. "An approach using SAT solvers for the RCPSP with logical constraints," European Journal of Operational Research, Elsevier, vol. 249(2), pages 577-591.
    14. Zsolt T. Kosztyán & István Szalkai, 2020. "Multimode resource-constrained project scheduling in flexible projects," Journal of Global Optimization, Springer, vol. 76(1), pages 211-241, January.
    15. Patrick Gerhards, 2020. "The multi-mode resource investment problem: a benchmark library and a computational study of lower and upper bounds," OR Spectrum: Quantitative Approaches in Management, Springer;Gesellschaft für Operations Research e.V., vol. 42(4), pages 901-933, December.
    16. T Wauters & K Verbeeck & G Vanden Berghe & P De Causmaecker, 2011. "Learning agents for the multi-mode project scheduling problem," Journal of the Operational Research Society, Palgrave Macmillan;The OR Society, vol. 62(2), pages 281-290, February.
    17. Salewski, Frank & Schirmer, Andreas & Drexl, Andreas, 1997. "Project scheduling under resource and mode identity constraints: Model, complexity, methods, and application," European Journal of Operational Research, Elsevier, vol. 102(1), pages 88-110, October.
    18. Hartmann, Sönke & Briskorn, Dirk, 2022. "An updated survey of variants and extensions of the resource-constrained project scheduling problem," European Journal of Operational Research, Elsevier, vol. 297(1), pages 1-14.
    19. Salewski, Frank & Schirmer, Andreas & Drexl, Andreas, 1996. "Project Scheduling under Resource and Mode Identity Constraints. Part I: Model, Complexity Status, and Methods," Manuskripte aus den Instituten für Betriebswirtschaftslehre der Universität Kiel 387, Christian-Albrechts-Universität zu Kiel, Institut für Betriebswirtschaftslehre.
    20. Ulusoy, Gunduz & Ozdamar, Linet, 1996. "A framework for an interactive project scheduling system under limited resources," European Journal of Operational Research, Elsevier, vol. 90(2), pages 362-375, April.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jsusta:v:15:y:2023:i:1:p:890-:d:1024291. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.