IDEAS home Printed from https://ideas.repec.org/a/gam/jsusta/v15y2023i19p14244-d1248305.html
   My bibliography  Save this article

Evaluation of the Impacts of Change in Land Use/Cover on Carbon Storage in Multiple Scenarios in the Taihang Mountains, China

Author

Listed:
  • Huanchao Guo

    (School of Surveying and Land Information Engineering, Henan Polytechnic University, Jiaozuo 454000, China)

  • Shi He

    (School of Surveying and Land Information Engineering, Henan Polytechnic University, Jiaozuo 454000, China)

  • Haitao Jing

    (School of Surveying and Land Information Engineering, Henan Polytechnic University, Jiaozuo 454000, China)

  • Geding Yan

    (School of Surveying and Land Information Engineering, Henan Polytechnic University, Jiaozuo 454000, China)

  • Hui Li

    (School of Surveying and Land Information Engineering, Henan Polytechnic University, Jiaozuo 454000, China)

Abstract

Research on the spatiotemporal changes in land use/cover (LUC) and carbon storage (CS) in the region of the Taihang Mountains in various developmental scenarios can provide significant guidance for optimizing the structure of LUC and formulating ecologically friendly economic development policies. We employed the PLUS and InVEST models to study change in LUC and CS in the Taihang Mountains from 1990 to 2020. Based on these results, we established three distinct development scenarios: a business-as-usual development scenario, a cropland protection scenario, and an ecological conservation scenario. Based on these three developmental scenarios, we simulated the spatiotemporal changes in LUC and CS in the Taihang Mountains in 2035. The results indicate that: (1) from 1990 to 2020, the CS in the Taihang Mountains increased from 1575.91 Tg to 1598.57 Tg, with a growth rate of approximately 1.44%. The primary source of this growth is attributed to the expansion of forests. (2) In the business-as-usual development scenario, the growth rate of CS in the Taihang Mountains was approximately 0.45%, indicating a slowdown in the trend. This suggests that economic development has the consequences of aggravating human–land conflicts, leading to a deceleration in the growth of CS. (3) In the cropland protection scenario, the increase in the CS in the Taihang Mountains was similar to the CS increase in the business-as-usual development scenario. However, the expansion of cropland dominated by impermeable surfaces, which indicates economic development, was considerably constrained in this scenario. (4) In the ecological conservation scenario, the increase in carbon storage in the Taihang Mountains was 1.16%, which is the fastest among all three scenarios. At the same time, there was a certain degree of development of impermeable surfaces, achieving a balance between economic development and ecological conservation.

Suggested Citation

  • Huanchao Guo & Shi He & Haitao Jing & Geding Yan & Hui Li, 2023. "Evaluation of the Impacts of Change in Land Use/Cover on Carbon Storage in Multiple Scenarios in the Taihang Mountains, China," Sustainability, MDPI, vol. 15(19), pages 1-17, September.
  • Handle: RePEc:gam:jsusta:v:15:y:2023:i:19:p:14244-:d:1248305
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2071-1050/15/19/14244/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2071-1050/15/19/14244/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Wang, Han & Wu, Xingyi & Wu, Di & Nie, Xin, 2019. "Will land development time restriction reduce land price? The perspective of American call options," Land Use Policy, Elsevier, vol. 83(C), pages 75-83.
    2. Ian H. Luby & Steve J. Miller & Stephen Polasky, 2022. "When and where to protect forests," Nature, Nature, vol. 609(7925), pages 89-93, September.
    3. Peng, Jian & Tian, Lu & Zhang, Zimo & Zhao, Yan & Green, Sophie M. & Quine, Timothy A. & Liu, Hongyan & Meersmans, Jeroen, 2020. "Distinguishing the impacts of land use and climate change on ecosystem services in a karst landscape in China," Ecosystem Services, Elsevier, vol. 46(C).
    4. Qing Liu & Dongdong Yang & Lei Cao & Bruce Anderson, 2022. "Assessment and Prediction of Carbon Storage Based on Land Use/Land Cover Dynamics in the Tropics: A Case Study of Hainan Island, China," Land, MDPI, vol. 11(2), pages 1-24, February.
    5. Kertész, Ádám & Nagy, Loránd Attila & Balázs, Boglárka, 2019. "Effect of land use change on ecosystem services in Lake Balaton Catchment," Land Use Policy, Elsevier, vol. 80(C), pages 430-438.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Chi, Yuan & Liu, Dahai & Wang, Jing & Wang, Enkang, 2020. "Human negative, positive, and net influences on an estuarine area with intensive human activity based on land covers and ecological indices: An empirical study in Chongming Island, China," Land Use Policy, Elsevier, vol. 99(C).
    2. Wanxu Chen & Guangqing Chi & Jiangfeng Li, 2020. "Ecosystem Services and Their Driving Forces in the Middle Reaches of the Yangtze River Urban Agglomerations, China," IJERPH, MDPI, vol. 17(10), pages 1-19, May.
    3. Fengjie Gao & Jinfang Cui & Si Zhang & Xiaohui Xin & Shaoliang Zhang & Jun Zhou & Ying Zhang, 2022. "Spatio-Temporal Distribution and Driving Factors of Ecosystem Service Value in a Fragile Hilly Area of North China," Land, MDPI, vol. 11(12), pages 1-20, December.
    4. Sipei Pan & Jiale Liang & Wanxu Chen & Jiangfeng Li & Ziqi Liu, 2021. "Gray Forecast of Ecosystem Services Value and Its Driving Forces in Karst Areas of China: A Case Study in Guizhou Province, China," IJERPH, MDPI, vol. 18(23), pages 1-20, November.
    5. Yonghua Li & Song Yao & Hezhou Jiang & Huarong Wang & Qinchuan Ran & Xinyun Gao & Xinyi Ding & Dandong Ge, 2022. "Spatial-Temporal Evolution and Prediction of Carbon Storage: An Integrated Framework Based on the MOP–PLUS–InVEST Model and an Applied Case Study in Hangzhou, East China," Land, MDPI, vol. 11(12), pages 1-22, December.
    6. Limin Yu & Yangbing Li & Meng Yu & Mei Chen & Linyu Yang, 2023. "Dynamic Changes in Agroecosystem Landscape Patterns and Their Driving Mechanisms in Karst Mountainous Areas of Southwest China: The Case of Central Guizhou," Sustainability, MDPI, vol. 15(12), pages 1-21, June.
    7. Zhigao Wu & Kangning Xiong & Dayun Zhu & Jie Xiao, 2022. "Revelation of Coupled Ecosystem Quality and Landscape Patterns for Agroforestry Ecosystem Services Sustainability Improvement in the Karst Desertification Control," Agriculture, MDPI, vol. 13(1), pages 1-27, December.
    8. Wang, Jinsong & Gao, Dongdong & Shi, Wei & Du, Jiayan & Huang, Zhuo & Liu, Buyuan, 2023. "Spatio-temporal changes in ecosystem service value: Evidence from the economic development of urbanised regions," Technological Forecasting and Social Change, Elsevier, vol. 193(C).
    9. Tatiana Kaletová & Luis Loures & Rui Alexandre Castanho & Elena Aydin & José Telo da Gama & Ana Loures & Amélie Truchy, 2019. "Relevance of Intermittent Rivers and Streams in Agricultural Landscape and Their Impact on Provided Ecosystem Services—A Mediterranean Case Study," IJERPH, MDPI, vol. 16(15), pages 1-16, July.
    10. João Vitor Roque Guerrero & António Alberto Teixeira Gomes & José Augusto de Lollo & Luiz Eduardo Moschini, 2020. "Mapping Potential Zones for Ecotourism Ecosystem Services as a Tool to Promote Landscape Resilience and Development in a Brazilian Municipality," Sustainability, MDPI, vol. 12(24), pages 1-21, December.
    11. Yao Lu & Min Zhou & Guoliang Ou & Zuo Zhang & Li He & Yuxiang Ma & Chaonan Ma & Jiating Tu & Siqi Li, 2021. "Sustainable Land-Use Allocation Model at a Watershed Level under Uncertainty," IJERPH, MDPI, vol. 18(24), pages 1-19, December.
    12. Shirui Zhao & Zemeng Fan & Xing Gao, 2022. "Spatiotemporal Dynamics of Land Cover and Their Driving Forces in the Yellow River Basin since 1990," Land, MDPI, vol. 11(9), pages 1-14, September.
    13. Mingyu Zhang & Qiuxiao Chen & Kewei Zhang & Dongye Yang, 2021. "Will Rural Collective-Owned Commercial Construction Land Marketization Impact Local Governments’ Interest Distribution? Evidence from Mainland China," Land, MDPI, vol. 10(2), pages 1-20, February.
    14. Binyu Ren & Qianfeng Wang & Rongrong Zhang & Xiaozhen Zhou & Xiaoping Wu & Qing Zhang, 2022. "Assessment of Ecosystem Services: Spatio-Temporal Analysis and the Spatial Response of Influencing Factors in Hainan Province," Sustainability, MDPI, vol. 14(15), pages 1-19, July.
    15. Stacchini, Annalisa & Guizzardi, Andrea & Mariotti, Alessia, 2022. "Smoothing down arbitrariness in planning: From SWOT to participatory decision making," Land Use Policy, Elsevier, vol. 119(C).
    16. Yuqing Xiong & Hong Li & Meichen Fu & Xiuhua Ma & Lei Wang, 2022. "Evaluation of Ecosystem Service Change Patterns in a Mining-Based City: A Case Study of Wu’an City," Land, MDPI, vol. 11(6), pages 1-18, June.
    17. Qiangqiang Yang & Pian Zhang & Xiaocong Qiu & Guanglai Xu & Jianyu Chi, 2023. "Spatial-Temporal Variations and Trade-Offs of Ecosystem Services in Anhui Province, China," IJERPH, MDPI, vol. 20(1), pages 1-18, January.
    18. Huiqing Han & Huirong Peng & Song Li & Jianqiang Yang & Zhenggang Yan, 2022. "The Non-Agriculturalization of Cultivated Land in Karst Mountainous Areas in China," Land, MDPI, vol. 11(10), pages 1-17, October.
    19. Vasileios Tsolis & Pantelis Barouchas, 2023. "Biochar as Soil Amendment: The Effect of Biochar on Soil Properties Using VIS-NIR Diffuse Reflectance Spectroscopy, Biochar Aging and Soil Microbiology—A Review," Land, MDPI, vol. 12(8), pages 1-41, August.
    20. Zhiheng Yang & Chenxi Li & Yongheng Fang, 2020. "Driving Factors of the Industrial Land Transfer Price Based on a Geographically Weighted Regression Model: Evidence from a Rural Land System Reform Pilot in China," Land, MDPI, vol. 9(1), pages 1-21, January.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jsusta:v:15:y:2023:i:19:p:14244-:d:1248305. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.