IDEAS home Printed from https://ideas.repec.org/a/gam/jsusta/v15y2023i18p13891-d1242674.html
   My bibliography  Save this article

Exploring Blockchain Implementation Challenges for Sustainable Supply Chains: An Integrated Fuzzy TOPSIS–ISM Approach

Author

Listed:
  • Md Al Amin

    (Division of Engineering Management and Decision Sciences, College of Science & Engineering, Hamad Bin Khalifa University, Doha P.O. Box 34110, Qatar
    Department of Industrial Engineering and Management, Khulna University of Engineering & Technology, Khulna 9203, Bangladesh)

  • Dewan Hafiz Nabil

    (Department of Industrial Engineering and Management, Khulna University of Engineering & Technology, Khulna 9203, Bangladesh)

  • Roberto Baldacci

    (Division of Engineering Management and Decision Sciences, College of Science & Engineering, Hamad Bin Khalifa University, Doha P.O. Box 34110, Qatar)

  • Md. Habibur Rahman

    (Division of Engineering Management and Decision Sciences, College of Science & Engineering, Hamad Bin Khalifa University, Doha P.O. Box 34110, Qatar
    Department of Industrial Engineering and Management, Khulna University of Engineering & Technology, Khulna 9203, Bangladesh)

Abstract

This study investigates the challenges in implementing blockchain technology (BT) in sustainable supply chain management (SSC). The study thoroughly analyzes the literature and expert opinions on BT, SCM, and sustainability. A total of 24 barriers are identified, categorized into the Internet of Things, strategic, supply chain, legislation, and external factors. The findings are evaluated using the Integrated Fuzzy TOPSIS–ISM tool. The results indicate that barriers related to the supply chain have the most significant impact on the adoption of BT in SSC. The study also reveals the interrelation among sub-barriers within the supply chain, providing valuable insights to improve adoption. Finally, a strategic action plan based on a fishbone diagram is provided to reduce the effects of supply chain barriers. This study provides a theoretical foundation for using BT to achieve long-term supply chain goals.

Suggested Citation

  • Md Al Amin & Dewan Hafiz Nabil & Roberto Baldacci & Md. Habibur Rahman, 2023. "Exploring Blockchain Implementation Challenges for Sustainable Supply Chains: An Integrated Fuzzy TOPSIS–ISM Approach," Sustainability, MDPI, vol. 15(18), pages 1-25, September.
  • Handle: RePEc:gam:jsusta:v:15:y:2023:i:18:p:13891-:d:1242674
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2071-1050/15/18/13891/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2071-1050/15/18/13891/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Md. Ismail Hossain & Md Al Amin & Roberto Baldacci & Md. Habibur Rahman, 2023. "Identification and Prioritization of Green Lean Supply Chain Management Factors Using Fuzzy DEMATEL," Sustainability, MDPI, vol. 15(13), pages 1-20, July.
    2. William Nikolakis & Lijo John & Harish Krishnan, 2018. "How Blockchain Can Shape Sustainable Global Value Chains: An Evidence, Verifiability, and Enforceability (EVE) Framework," Sustainability, MDPI, vol. 10(11), pages 1-16, October.
    3. Wang, Yingli & Singgih, Meita & Wang, Jingyao & Rit, Mihaela, 2019. "Making sense of blockchain technology: How will it transform supply chains?," International Journal of Production Economics, Elsevier, vol. 211(C), pages 221-236.
    4. Jamilya Nurgazina & Udsanee Pakdeetrakulwong & Thomas Moser & Gerald Reiner, 2021. "Distributed Ledger Technology Applications in Food Supply Chains: A Review of Challenges and Future Research Directions," Sustainability, MDPI, vol. 13(8), pages 1-26, April.
    5. Vineet Paliwal & Shalini Chandra & Suneel Sharma, 2020. "Blockchain Technology for Sustainable Supply Chain Management: A Systematic Literature Review and a Classification Framework," Sustainability, MDPI, vol. 12(18), pages 1-39, September.
    6. Jesse Yli-Huumo & Deokyoon Ko & Sujin Choi & Sooyong Park & Kari Smolander, 2016. "Where Is Current Research on Blockchain Technology?—A Systematic Review," PLOS ONE, Public Library of Science, vol. 11(10), pages 1-27, October.
    7. Islam, A.K.M. Najmul & Mäntymäki, Matti & Turunen, Marja, 2019. "Why do blockchains split? An actor-network perspective on Bitcoin splits," Technological Forecasting and Social Change, Elsevier, vol. 148(C).
    8. Kannan, Govindan & Pokharel, Shaligram & Sasi Kumar, P., 2009. "A hybrid approach using ISM and fuzzy TOPSIS for the selection of reverse logistics provider," Resources, Conservation & Recycling, Elsevier, vol. 54(1), pages 28-36.
    9. Lee Won Park & Sanghoon Lee & Hangbae Chang, 2018. "A Sustainable Home Energy Prosumer-Chain Methodology with Energy Tags over the Blockchain," Sustainability, MDPI, vol. 10(3), pages 1-18, March.
    10. Aymen Sajjad & Gabriel Eweje & David Tappin, 2015. "Sustainable Supply Chain Management: Motivators and Barriers," Business Strategy and the Environment, Wiley Blackwell, vol. 24(7), pages 643-655, November.
    11. Arim Park & Huan Li, 2021. "The Effect of Blockchain Technology on Supply Chain Sustainability Performances," Sustainability, MDPI, vol. 13(4), pages 1-18, February.
    12. Marsal-Llacuna, Maria-Lluïsa, 2018. "Future living framework: Is blockchain the next enabling network?," Technological Forecasting and Social Change, Elsevier, vol. 128(C), pages 226-234.
    13. Andoni, Merlinda & Robu, Valentin & Flynn, David & Abram, Simone & Geach, Dale & Jenkins, David & McCallum, Peter & Peacock, Andrew, 2019. "Blockchain technology in the energy sector: A systematic review of challenges and opportunities," Renewable and Sustainable Energy Reviews, Elsevier, vol. 100(C), pages 143-174.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Kouhizadeh, Mahtab & Saberi, Sara & Sarkis, Joseph, 2021. "Blockchain technology and the sustainable supply chain: Theoretically exploring adoption barriers," International Journal of Production Economics, Elsevier, vol. 231(C).
    2. Kimani, Danson & Adams, Kweku & Attah-Boakye, Rexford & Ullah, Subhan & Frecknall-Hughes, Jane & Kim, Ja, 2020. "Blockchain, business and the fourth industrial revolution: Whence, whither, wherefore and how?," Technological Forecasting and Social Change, Elsevier, vol. 161(C).
    3. Friedman, Nicola & Ormiston, Jarrod, 2022. "Blockchain as a sustainability-oriented innovation?: Opportunities for and resistance to Blockchain technology as a driver of sustainability in global food supply chains," Technological Forecasting and Social Change, Elsevier, vol. 175(C).
    4. Garg, Poonam & Gupta, Bhumika & Chauhan, Ajay Kumar & Sivarajah, Uthayasankar & Gupta, Shivam & Modgil, Sachin, 2021. "Measuring the perceived benefits of implementing blockchain technology in the banking sector," Technological Forecasting and Social Change, Elsevier, vol. 163(C).
    5. Yazıcı, Ali Fırat & Olcay, Ali Bahadır & Arkalı Olcay, Gökçen, 2023. "A framework for maintaining sustainable energy use in Bitcoin mining through switching efficient mining hardware," Technological Forecasting and Social Change, Elsevier, vol. 190(C).
    6. Abderahman Rejeb & Karim Rejeb & Steve Simske & Horst Treiblmaier, 2021. "Blockchain Technologies in Logistics and Supply Chain Management: A Bibliometric Review," Logistics, MDPI, vol. 5(4), pages 1-28, October.
    7. A. J. Jin & C. Li & J. Su & J. Tan, 2022. "Fundamental Studies of Smart Distributed Energy Resources along with Energy Blockchain," Energies, MDPI, vol. 15(21), pages 1-12, October.
    8. Büttgen, Marion & al.,, 2021. "Blockchain in Service Management and Service Research - Developing a Research Agenda and Managerial Implications," SMR - Journal of Service Management Research, Nomos Verlagsgesellschaft mbH & Co. KG, vol. 5(2), pages 71-102.
    9. Seyyed-Alireza Radmanesh & Alireza Haji & Omid Fatahi Valilai, 2023. "Blockchain-Based Architecture for a Sustainable Supply Chain in Cloud Architecture," Sustainability, MDPI, vol. 15(11), pages 1-19, June.
    10. Tandon, Anushree & Kaur, Puneet & Mäntymäki, Matti & Dhir, Amandeep, 2021. "Blockchain applications in management: A bibliometric analysis and literature review," Technological Forecasting and Social Change, Elsevier, vol. 166(C).
    11. Xiwen Fu & Shuxin Wang, 2022. "How to Promote Low-Carbon Cities with Blockchain Technology? A Blockchain-Based Low-Carbon Development Model for Chinese Cities," Sustainability, MDPI, vol. 14(20), pages 1-17, October.
    12. Yahia Baashar & Gamal Alkawsi & Ammar Ahmed Alkahtani & Wahidah Hashim & Rina Azlin Razali & Sieh Kiong Tiong, 2021. "Toward Blockchain Technology in the Energy Environment," Sustainability, MDPI, vol. 13(16), pages 1-20, August.
    13. Sun, Yi & Jiang, Shiqing & Jia, Wanjiao & Wang, Yu, 2022. "Blockchain as a cutting-edge technology impacting business: A systematic literature review perspective," Telecommunications Policy, Elsevier, vol. 46(10).
    14. Weichu Deng & Teng Huang & Haiyang Wang, 2022. "A Review of the Key Technology in a Blockchain Building Decentralized Trust Platform," Mathematics, MDPI, vol. 11(1), pages 1-29, December.
    15. Thomas Puschmann & Christian Hugo Hoffmann & Valentyn Khmarskyi, 2020. "How Green FinTech Can Alleviate the Impact of Climate Change—The Case of Switzerland," Sustainability, MDPI, vol. 12(24), pages 1-30, December.
    16. Christian Straubert & Eric Sucky, 2021. "How Useful Is a Distributed Ledger for Tracking and Tracing in Supply Chains? A Systems Thinking Approach," Logistics, MDPI, vol. 5(4), pages 1-18, October.
    17. Abderahman Rejeb & Karim Rejeb & Steven J. Simske & John G. Keogh, 2022. "Blockchain technology in the smart city: a bibliometric review," Quality & Quantity: International Journal of Methodology, Springer, vol. 56(5), pages 2875-2906, October.
    18. Esther Salmerón-Manzano & Francisco Manzano-Agugliaro, 2019. "The Role of Smart Contracts in Sustainability: Worldwide Research Trends," Sustainability, MDPI, vol. 11(11), pages 1-16, May.
    19. Lennart Ante, 2020. "A place next to Satoshi: foundations of blockchain and cryptocurrency research in business and economics," Scientometrics, Springer;Akadémiai Kiadó, vol. 124(2), pages 1305-1333, August.
    20. Tseng, Fang-Mei & Palma Gil, Eunice Ina N. & Lu, Louis Y.Y., 2021. "Developmental trajectories of blockchain research and its major subfields," Technology in Society, Elsevier, vol. 66(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jsusta:v:15:y:2023:i:18:p:13891-:d:1242674. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.