IDEAS home Printed from https://ideas.repec.org/a/gam/jsusta/v15y2023i18p13600-d1237907.html
   My bibliography  Save this article

Building Information Modeling Applications in Energy-Efficient Refurbishment of Existing Building Stock: A Case Study

Author

Listed:
  • Muhammed Yildirim

    (School of Architecture, Design & Planning, The University of Sydney, Sydney 2006, Australia)

  • Hasan Polat

    (Faculty of Architecture, Firat University, Elazig 23040, Turkey)

Abstract

The built environment contributes to 35% of the global energy consumption and 38% of energy-related carbon emissions. The exponential population growth, coupled with the inability of the existing building stock to meet demands or reach the end of its lifespan, has precipitated the proliferation of new constructions worldwide. However, it has been proven well that retrofitting existing buildings might impact the environment less, save resources, and reduce the carbon footprint while extending their lifecycle. Various techniques are available to assess the performance of existing buildings and quantify the energy-saving potential of renovation measures. Building information modeling (BIM) technology serves as a virtual laboratory for buildings and can be used to model building stocks and measure how building performance changes with alternative envelope and system proposals. This research study explores the potential of BIM-based energy modeling to evaluate the effectiveness of refurbishment scenarios on a residential building. A total of 192 alternative scenarios were developed by considering six variables (wall, roofing, insulation, glazing, lighting power density, and photovoltaic panels). The results were analyzed across annual energy consumption (fuel and electric), annual/lifecycle energy costs, energy use intensity, annual CO 2 emissions, and initial investment costs. The optimum alternative scenario decreased the annual fuel and electricity consumption of the sample building by 61% and 64%, respectively. The payback period was calculated as 12 years. This study demonstrates the impact of BIM in enhancing the energy efficiency of the existing building stock, presenting results within the context of a residential building.

Suggested Citation

  • Muhammed Yildirim & Hasan Polat, 2023. "Building Information Modeling Applications in Energy-Efficient Refurbishment of Existing Building Stock: A Case Study," Sustainability, MDPI, vol. 15(18), pages 1-19, September.
  • Handle: RePEc:gam:jsusta:v:15:y:2023:i:18:p:13600-:d:1237907
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2071-1050/15/18/13600/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2071-1050/15/18/13600/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Abanda, F.H. & Byers, L., 2016. "An investigation of the impact of building orientation on energy consumption in a domestic building using emerging BIM (Building Information Modelling)," Energy, Elsevier, vol. 97(C), pages 517-527.
    2. Habibi, Shahryar & Obonyo, Esther Adhiambo & Memari, Ali M., 2020. "Design and development of energy efficient re-roofing solutions," Renewable Energy, Elsevier, vol. 151(C), pages 1209-1219.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Rongrong Yu & Ning Gu & Michael J. Ostwald, 2022. "Architects’ Perceptions about Sustainable Design Practice and the Support Provided for This by Digital Tools: A Study in Australia," Sustainability, MDPI, vol. 14(21), pages 1-18, October.
    2. So-Young Lee & Myoung-Won Oh, 2020. "Sustainable Design Alternatives and Energy Efficiency for Public Rental Housing in Korea," Sustainability, MDPI, vol. 12(20), pages 1-26, October.
    3. Chi, Fang'ai & Zhang, Jianxun & Li, Gaomei & Zhu, Zongzhou & Bart, Dewancker, 2019. "An investigation of the impact of Building Azimuth on energy consumption in sizhai traditional dwellings," Energy, Elsevier, vol. 180(C), pages 594-614.
    4. Shen, Meng & Li, Xiang & Lu, Yujie & Cui, Qingbin & Wei, Yi-Ming, 2021. "Personality-based normative feedback intervention for energy conservation," Energy Economics, Elsevier, vol. 104(C).
    5. George M. Stavrakakis & Dimitris Al. Katsaprakakis & Markos Damasiotis, 2021. "Basic Principles, Most Common Computational Tools, and Capabilities for Building Energy and Urban Microclimate Simulations," Energies, MDPI, vol. 14(20), pages 1-41, October.
    6. Ghasan Alfalah & Abobakr Al-Sakkaf & Eslam Mohammed Abdelkader & Tarek Zayed, 2022. "An Integrated Fuzzy-Based Sustainability Framework for Post-Secondary Educational Buildings: A User-Perspective Approach," Sustainability, MDPI, vol. 14(16), pages 1-26, August.
    7. Khemakhem, Siwar & Rekik, Mouna & Krichen, Lotfi, 2019. "Double layer home energy supervision strategies based on demand response and plug-in electric vehicle control for flattening power load curves in a smart grid," Energy, Elsevier, vol. 167(C), pages 312-324.
    8. José Pedro Carvalho & Fernanda Schmitd Villaschi & Luís Bragança, 2021. "Assessing Life Cycle Environmental and Economic Impacts of Building Construction Solutions with BIM," Sustainability, MDPI, vol. 13(16), pages 1-23, August.
    9. Jungsik Choi & Sejin Lee, 2023. "A Suggestion of the Alternatives Evaluation Method through IFC-Based Building Energy Performance Analysis," Sustainability, MDPI, vol. 15(3), pages 1-14, January.
    10. Jeongyoon Oh & Taehoon Hong & Hakpyeong Kim & Jongbaek An & Kwangbok Jeong & Choongwan Koo, 2017. "Advanced Strategies for Net-Zero Energy Building: Focused on the Early Phase and Usage Phase of a Building’s Life Cycle," Sustainability, MDPI, vol. 9(12), pages 1-52, December.
    11. Szodrai, Ferenc & Lakatos, Ákos & Kalmár, Ferenc, 2016. "Analysis of the change of the specific heat loss coefficient of buildings resulted by the variation of the geometry and the moisture load," Energy, Elsevier, vol. 115(P1), pages 820-829.
    12. Li, Y. & Arulnathan, V. & Heidari, M.D. & Pelletier, N., 2022. "Design considerations for net zero energy buildings for intensive, confined poultry production: A review of current insights, knowledge gaps, and future directions," Renewable and Sustainable Energy Reviews, Elsevier, vol. 154(C).
    13. Aiman Mohammed & Muhammad Atiq Ur Rehman Tariq & Anne Wai Man Ng & Zeeshan Zaheer & Safwan Sadeq & Mahmood Mohammed & Hooman Mehdizadeh-Rad, 2022. "Reducing the Cooling Loads of Buildings Using Shading Devices: A Case Study in Darwin," Sustainability, MDPI, vol. 14(7), pages 1-20, March.
    14. Huan Zhang & Yajie Wang & Xianze Liu & Fujing Wan & Wandong Zheng, 2024. "Multi-Objective Optimization with Active–Passive Technology Synergy for Rural Residences in Northern China," Energies, MDPI, vol. 17(7), pages 1-25, March.
    15. Eric Forcael & Isabella Ferrari & Alexander Opazo-Vega & Jesús Alberto Pulido-Arcas, 2020. "Construction 4.0: A Literature Review," Sustainability, MDPI, vol. 12(22), pages 1-28, November.
    16. Gao, Hao & Koch, Christian & Wu, Yupeng, 2019. "Building information modelling based building energy modelling: A review," Applied Energy, Elsevier, vol. 238(C), pages 320-343.
    17. Tingchen Fang & Yiming Zhao & Jian Gong & Feiliang Wang & Jian Yang, 2021. "Investigation on Maintenance Technology of Large-Scale Public Venues Based on BIM Technology," Sustainability, MDPI, vol. 13(14), pages 1-18, July.
    18. Zhonghao Chen & Lin Chen & Xingyang Zhou & Lepeng Huang & Malindu Sandanayake & Pow-Seng Yap, 2024. "Recent Technological Advancements in BIM and LCA Integration for Sustainable Construction: A Review," Sustainability, MDPI, vol. 16(3), pages 1-30, February.
    19. Binjin Chen & Shaohua Jiang & Ligang Qi & Yawu Su & Yufeng Mao & Meng Wang & Hee Sung Cha, 2022. "Design and Implementation of Quantity Calculation Method Based on BIM Data," Sustainability, MDPI, vol. 14(13), pages 1-19, June.
    20. Francisco Javier Montiel-Santiago & Manuel Jesús Hermoso-Orzáez & Julio Terrados-Cepeda, 2020. "Sustainability and Energy Efficiency: BIM 6D. Study of the BIM Methodology Applied to Hospital Buildings. Value of Interior Lighting and Daylight in Energy Simulation," Sustainability, MDPI, vol. 12(14), pages 1-29, July.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jsusta:v:15:y:2023:i:18:p:13600-:d:1237907. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.