IDEAS home Printed from https://ideas.repec.org/a/gam/jsusta/v15y2023i18p13423-d1235168.html
   My bibliography  Save this article

Air Traffic Sector Network: Motif Identification and Resilience Evaluation Based on Subgraphs

Author

Listed:
  • Zongbei Shi

    (College of Civil Aviation, Nanjing University of Aeronautics and Astronautics, Nanjing 211106, China
    National Key Laboratory of Air Traffic Flow Management, Nanjing University of Aeronautics and Astronautics, No. 29 General Avenue, Nanjing 211106, China)

  • Honghai Zhang

    (College of Civil Aviation, Nanjing University of Aeronautics and Astronautics, Nanjing 211106, China
    National Key Laboratory of Air Traffic Flow Management, Nanjing University of Aeronautics and Astronautics, No. 29 General Avenue, Nanjing 211106, China)

  • Yike Li

    (College of Civil Aviation, Nanjing University of Aeronautics and Astronautics, Nanjing 211106, China
    National Key Laboratory of Air Traffic Flow Management, Nanjing University of Aeronautics and Astronautics, No. 29 General Avenue, Nanjing 211106, China)

  • Jinlun Zhou

    (College of Civil Aviation, Nanjing University of Aeronautics and Astronautics, Nanjing 211106, China
    National Key Laboratory of Air Traffic Flow Management, Nanjing University of Aeronautics and Astronautics, No. 29 General Avenue, Nanjing 211106, China)

Abstract

Air traffic control systems play a critical role in ensuring the sustainable and resilient flow of air traffic. The air traffic sector serves as a fundamental topological unit and is responsible for overseeing and maintaining the system’s sustainable operation. Examining the structural characteristics of the air traffic sector network is a useful approach to gaining an intuitive understanding of the system’s sustainability and resilience. In this paper, an air traffic sector network (ATSN) was established in mainland China using the complex network theory, and its motif characteristics were analyzed from a microscopic perspective. Additionally, subgraph resilience was defined in order to describe the network topology by analyzing changes in subgraph motif concentration and subgraph residual concentration. Our empirical findings indicated that motifs exhibit high connectivity, while anti-motifs are found in subgraph structures with low connectivity. The motif concentration of subgraphs can efficiently reflect the distribution of heterogeneous subgraph structures within a network. During the process of resilience evaluation, the subgraph motif concentration remains relatively stable but is sensitive to the transition state of the network from disturbance to recovery. The resilience of the system at the macroscopic scale is aligned with the resilience of each heterogeneous subgraph structure to some extent. Topological indicators have a more significant impact on the resilience of the ATSN than air traffic flow characteristics. This study has the outcome of uncovering the preference for connection among nodes and the rationality of sector structure delineation in ATSNs. Additionally, this research addresses the fundamental mechanism behind the network disturbance recovery process, and identifies the connection between network macro- and microstructure in the resilience process.

Suggested Citation

  • Zongbei Shi & Honghai Zhang & Yike Li & Jinlun Zhou, 2023. "Air Traffic Sector Network: Motif Identification and Resilience Evaluation Based on Subgraphs," Sustainability, MDPI, vol. 15(18), pages 1-19, September.
  • Handle: RePEc:gam:jsusta:v:15:y:2023:i:18:p:13423-:d:1235168
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2071-1050/15/18/13423/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2071-1050/15/18/13423/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Sean Wilkinson & Sarah Dunn & Shu Ma, 2012. "The vulnerability of the European air traffic network to spatial hazards," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 60(3), pages 1027-1036, February.
    2. Junqing Tang & Hans Rudolf Heinimann, 2018. "A resilience-oriented approach for quantitatively assessing recurrent spatial-temporal congestion on urban roads," PLOS ONE, Public Library of Science, vol. 13(1), pages 1-22, January.
    3. Kalliopi Sapountzaki, 2022. "Risk Mitigation, Vulnerability Management, and Resilience under Disasters," Sustainability, MDPI, vol. 14(6), pages 1-8, March.
    4. Hosseini, Seyedmohsen & Barker, Kash & Ramirez-Marquez, Jose E., 2016. "A review of definitions and measures of system resilience," Reliability Engineering and System Safety, Elsevier, vol. 145(C), pages 47-61.
    5. Jesus Beyza & Jose M. Yusta, 2021. "Integrated Risk Assessment for Robustness Evaluation and Resilience Optimisation of Power Systems after Cascading Failures," Energies, MDPI, vol. 14(7), pages 1-18, April.
    6. Du, Wen-Bo & Zhang, Ming-Yuan & Zhang, Yu & Cao, Xian-Bin & Zhang, Jun, 2018. "Delay causality network in air transport systems," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 118(C), pages 466-476.
    7. Wong, Allen & Tan, Sijian & Chandramouleeswaran, Keshav Ram & Tran, Huy T., 2020. "Data-driven analysis of resilience in airline networks," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 143(C).
    8. Ying Jin & Ye Wei & Chunliang Xiu & Wei Song & Kaixian Yang, 2019. "Study on Structural Characteristics of China’s Passenger Airline Network Based on Network Motifs Analysis," Sustainability, MDPI, vol. 11(9), pages 1-15, April.
    9. Gama Dessavre, Dante & Ramirez-Marquez, Jose E. & Barker, Kash, 2016. "Multidimensional approach to complex system resilience analysis," Reliability Engineering and System Safety, Elsevier, vol. 149(C), pages 34-43.
    10. Tzen-Ying Ling, 2022. "Dynamic Flood Resilience Typology: A Systemic Transitional Adaptation from Peitou Plateau, Taiwan," Sustainability, MDPI, vol. 14(2), pages 1-24, January.
    11. Huijuan Yang & Meilong Le & Di Wang, 2021. "Airline Network Structure: Motifs and Airports’ Role in Cliques," Sustainability, MDPI, vol. 13(17), pages 1-14, August.
    12. Xun Zeng & Yuanchun Yu & San Yang & Yang Lv & Md Nazirul Islam Sarker, 2022. "Urban Resilience for Urban Sustainability: Concepts, Dimensions, and Perspectives," Sustainability, MDPI, vol. 14(5), pages 1-27, February.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Liu, Aijun & Li, Zengxian & Shang, Wen-Long & Ochieng, Washington, 2023. "Performance evaluation model of transportation infrastructure: Perspective of COVID-19," Transportation Research Part A: Policy and Practice, Elsevier, vol. 170(C).
    2. Poulin, Craig & Kane, Michael B., 2021. "Infrastructure resilience curves: Performance measures and summary metrics," Reliability Engineering and System Safety, Elsevier, vol. 216(C).
    3. Fang, Yi-Ping & Sansavini, Giovanni, 2019. "Optimum post-disruption restoration under uncertainty for enhancing critical infrastructure resilience," Reliability Engineering and System Safety, Elsevier, vol. 185(C), pages 1-11.
    4. Zhao, S. & Liu, X. & Zhuo, Y., 2017. "Hybrid Hidden Markov Models for resilience metrics in a dynamic infrastructure system," Reliability Engineering and System Safety, Elsevier, vol. 164(C), pages 84-97.
    5. Cai, Baoping & Zhang, Yanping & Wang, Haifeng & Liu, Yonghong & Ji, Renjie & Gao, Chuntan & Kong, Xiangdi & Liu, Jing, 2021. "Resilience evaluation methodology of engineering systems with dynamic-Bayesian-network-based degradation and maintenance," Reliability Engineering and System Safety, Elsevier, vol. 209(C).
    6. Gonçalves, L.A.P.J. & Ribeiro, P.J.G., 2020. "Resilience of urban transportation systems. Concept, characteristics, and methods," Journal of Transport Geography, Elsevier, vol. 85(C).
    7. Araceli Zavala & David Nowicki & Jose Emmanuel Ramirez-Marquez, 2019. "Quantitative metrics to analyze supply chain resilience and associated costs," Journal of Risk and Reliability, , vol. 233(2), pages 186-199, April.
    8. Liu, Wei & Song, Zhaoyang, 2020. "Review of studies on the resilience of urban critical infrastructure networks," Reliability Engineering and System Safety, Elsevier, vol. 193(C).
    9. Dmitry Borisoglebsky & Liz Varga, 2019. "A Resilience Toolbox and Research Design for Black Sky Hazards to Power Grids," Complexity, Hindawi, vol. 2019, pages 1-15, June.
    10. Das, Laya & Munikoti, Sai & Natarajan, Balasubramaniam & Srinivasan, Babji, 2020. "Measuring smart grid resilience: Methods, challenges and opportunities," Renewable and Sustainable Energy Reviews, Elsevier, vol. 130(C).
    11. Cai, Baoping & Xie, Min & Liu, Yonghong & Liu, Yiliu & Feng, Qiang, 2018. "Availability-based engineering resilience metric and its corresponding evaluation methodology," Reliability Engineering and System Safety, Elsevier, vol. 172(C), pages 216-224.
    12. Wang, Jing & Zuo, Wangda & Rhode-Barbarigos, Landolf & Lu, Xing & Wang, Jianhui & Lin, Yanling, 2019. "Literature review on modeling and simulation of energy infrastructures from a resilience perspective," Reliability Engineering and System Safety, Elsevier, vol. 183(C), pages 360-373.
    13. Chen, Yu & Wang, Jiaoe & Jin, Fengjun, 2020. "Robustness of China’s air transport network from 1975 to 2017," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 539(C).
    14. Adel Mottahedi & Farhang Sereshki & Mohammad Ataei & Ali Nouri Qarahasanlou & Abbas Barabadi, 2021. "The Resilience of Critical Infrastructure Systems: A Systematic Literature Review," Energies, MDPI, vol. 14(6), pages 1-32, March.
    15. Umunnakwe, A. & Huang, H. & Oikonomou, K. & Davis, K.R., 2021. "Quantitative analysis of power systems resilience: Standardization, categorizations, and challenges," Renewable and Sustainable Energy Reviews, Elsevier, vol. 149(C).
    16. Jie Yang & Yanan Ding & Lin Zhang, 2022. "Conceptualizing and Measuring Megacity Resilience with an Integrated Approach: The Case of China," Sustainability, MDPI, vol. 14(18), pages 1-26, September.
    17. Yin, Jiateng & Ren, Xianliang & Liu, Ronghui & Tang, Tao & Su, Shuai, 2022. "Quantitative analysis for resilience-based urban rail systems: A hybrid knowledge-based and data-driven approach," Reliability Engineering and System Safety, Elsevier, vol. 219(C).
    18. Guo, Zhen & Hao, Mengyan & Yu, Bin & Yao, Baozhen, 2022. "Detecting delay propagation in regional air transport systems using convergent cross mapping and complex network theory," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 157(C).
    19. Junqing Tang & Hans R. Heinimann, 2019. "Quantitative evaluation of consecutive resilience cycles in stock market performance: A systems-oriented approach," Papers 1903.03201, arXiv.org.
    20. Xinglong Wang & Shangfei Miao & Junqing Tang, 2020. "Vulnerability and Resilience Analysis of the Air Traffic Control Sector Network in China," Sustainability, MDPI, vol. 12(9), pages 1-18, May.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jsusta:v:15:y:2023:i:18:p:13423-:d:1235168. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.