IDEAS home Printed from https://ideas.repec.org/a/gam/jsusta/v15y2023i17p12793-d1223850.html
   My bibliography  Save this article

Finding Patterns of Construction Systems in Low-Income Housing for Thermal and Energy Performance Evaluation through Cluster Analysis

Author

Listed:
  • Aline Schaefer

    (Research Group on Management of Sustainable Environments, Laboratory of Energy Efficiency in Buildings, Department of Civil Engineering, Federal University of Santa Catarina, Florianópolis 88040-900, SC, Brazil)

  • Taylana Piccinini Scolaro

    (Research Group on Management of Sustainable Environments, Laboratory of Energy Efficiency in Buildings, Department of Civil Engineering, Federal University of Santa Catarina, Florianópolis 88040-900, SC, Brazil)

  • Enedir Ghisi

    (Research Group on Management of Sustainable Environments, Laboratory of Energy Efficiency in Buildings, Department of Civil Engineering, Federal University of Santa Catarina, Florianópolis 88040-900, SC, Brazil)

Abstract

Energy consumption in buildings depends on many factors, including envelope materials. This paper aims to propose a method based on cluster analysis for finding reference models based on actual construction systems of low-income housing. Such reference models can be used in future thermal and energy performance studies. Data on the envelope composition of a sample of 106 dwellings were obtained through a field survey in Florianópolis, southern Brazil. Cluster analyses were performed to group similar materials and construction systems together, and therefore, a reference model was obtained for each cluster. Computer simulations and hypothesis tests were performed to verify whether the reference models represented the sample. Three reference models were obtained from the cluster analysis. Cluster 1 comprised houses with ceramic-brick walls, concrete floor, and concrete slabs. Cluster 2 comprised houses with ceramic-brick walls, concrete floor, ceramic tiles, and wooden ceilings. Cluster 3 comprised houses with wooden walls, wooden floor, cement tiles, and wooden ceilings. Cluster 1 performed better than the other clusters in the cold season (mean degree-hour was 1299 for cooling and 1361 for heating in the reference model). Cluster 2 performed better the other clusters over the hot season (mean degree-hour was 1014 for cooling and 1451 for heating). Cluster 3 showed the worst performance (mean degree-hour was 3793 for cooling and 2988 for heating). Thus, the hypothesis tests have shown that the three reference models differ from each other and can represent their clusters properly. Cluster analysis was a practical and objective method for obtaining reference models.

Suggested Citation

  • Aline Schaefer & Taylana Piccinini Scolaro & Enedir Ghisi, 2023. "Finding Patterns of Construction Systems in Low-Income Housing for Thermal and Energy Performance Evaluation through Cluster Analysis," Sustainability, MDPI, vol. 15(17), pages 1-23, August.
  • Handle: RePEc:gam:jsusta:v:15:y:2023:i:17:p:12793-:d:1223850
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2071-1050/15/17/12793/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2071-1050/15/17/12793/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Palladino, Domenico, 2023. "Energy performance gap of the Italian residential building stock: Parametric energy simulations for theoretical deviation assessment from standard conditions," Applied Energy, Elsevier, vol. 345(C).
    2. Filogamo, Luana & Peri, Giorgia & Rizzo, Gianfranco & Giaccone, Antonino, 2014. "On the classification of large residential buildings stocks by sample typologies for energy planning purposes," Applied Energy, Elsevier, vol. 135(C), pages 825-835.
    3. Attia, Shady & Evrard, Arnaud & Gratia, Elisabeth, 2012. "Development of benchmark models for the Egyptian residential buildings sector," Applied Energy, Elsevier, vol. 94(C), pages 270-284.
    4. Corgnati, Stefano Paolo & Fabrizio, Enrico & Filippi, Marco & Monetti, Valentina, 2013. "Reference buildings for cost optimal analysis: Method of definition and application," Applied Energy, Elsevier, vol. 102(C), pages 983-993.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Brandão de Vasconcelos, Ana & Pinheiro, Manuel Duarte & Manso, Armando & Cabaço, António, 2015. "A Portuguese approach to define reference buildings for cost-optimal methodologies," Applied Energy, Elsevier, vol. 140(C), pages 316-328.
    2. Younghoon Kwak & Jeonga Kang & Sun-Hye Mun & Young-Sun Jeong & Jung-Ho Huh, 2020. "Development and Application of a Flexible Modeling Approach to Reference Buildings for Energy Analysis," Energies, MDPI, vol. 13(21), pages 1-22, November.
    3. Szalay, Zsuzsa & Zöld, András, 2014. "Definition of nearly zero-energy building requirements based on a large building sample," Energy Policy, Elsevier, vol. 74(C), pages 510-521.
    4. Filogamo, Luana & Peri, Giorgia & Rizzo, Gianfranco & Giaccone, Antonino, 2014. "On the classification of large residential buildings stocks by sample typologies for energy planning purposes," Applied Energy, Elsevier, vol. 135(C), pages 825-835.
    5. Attia, Shady & Shadmanfar, Niloufar & Ricci, Federico, 2020. "Developing two benchmark models for nearly zero energy schools," Applied Energy, Elsevier, vol. 263(C).
    6. Buso, Tiziana & Corgnati, Stefano Paolo, 2017. "A customized modelling approach for multi-functional buildings – Application to an Italian Reference Hotel," Applied Energy, Elsevier, vol. 190(C), pages 1302-1315.
    7. Hanan S.S. Ibrahim & Ahmed Z. Khan & Shady Attia & Yehya Serag, 2021. "Classification of Heritage Residential Building Stock and Defining Sustainable Retrofitting Scenarios in Khedivial Cairo," Sustainability, MDPI, vol. 13(2), pages 1-26, January.
    8. Baglivo, Cristina & Congedo, Paolo Maria & D'Agostino, Delia & Zacà, Ilaria, 2015. "Cost-optimal analysis and technical comparison between standard and high efficient mono-residential buildings in a warm climate," Energy, Elsevier, vol. 83(C), pages 560-575.
    9. Pikas, Ergo & Thalfeldt, Martin & Kurnitski, Jarek & Liias, Roode, 2015. "Extra cost analyses of two apartment buildings for achieving nearly zero and low energy buildings," Energy, Elsevier, vol. 84(C), pages 623-633.
    10. Radhi, Hassan & Sharples, Stephen, 2013. "Quantifying the domestic electricity consumption for air-conditioning due to urban heat islands in hot arid regions," Applied Energy, Elsevier, vol. 112(C), pages 371-380.
    11. Talebi, Behrang & Haghighat, Fariborz & Tuohy, Paul & Mirzaei, Parham A., 2018. "Validation of a community district energy system model using field measured data," Energy, Elsevier, vol. 144(C), pages 694-706.
    12. Bienvenido-Huertas, David & Moyano, Juan & Rodríguez-Jiménez, Carlos E. & Marín, David, 2019. "Applying an artificial neural network to assess thermal transmittance in walls by means of the thermometric method," Applied Energy, Elsevier, vol. 233, pages 1-14.
    13. Aste, Niccolò & Adhikari, R.S. & Manfren, Massimiliano, 2013. "Cost optimal analysis of heat pump technology adoption in residential reference buildings," Renewable Energy, Elsevier, vol. 60(C), pages 615-624.
    14. Bosu, Issa & Mahmoud, Hatem & Hassan, Hamdy, 2023. "Energy audit, techno-economic, and environmental assessment of integrating solar technologies for energy management in a university residential building: A case study," Applied Energy, Elsevier, vol. 341(C).
    15. Delmastro, C. & Martinsson, F. & Dulac, J. & Corgnati, S.P., 2017. "Sustainable urban heat strategies: Perspectives from integrated district energy choices and energy conservation in buildings. Case studies in Torino and Stockholm," Energy, Elsevier, vol. 138(C), pages 1209-1220.
    16. Eleftheria Touloupaki & Theodoros Theodosiou, 2017. "Optimization of External Envelope Insulation Thickness: A Parametric Study," Energies, MDPI, vol. 10(3), pages 1-19, February.
    17. Martin Eriksson & Jan Akander & Bahram Moshfegh, 2022. "Investigating Energy Use in a City District in Nordic Climate Using Energy Signature," Energies, MDPI, vol. 15(5), pages 1-22, March.
    18. Aldubyan, Mohammad & Krarti, Moncef, 2022. "Impact of stay home living on energy demand of residential buildings: Saudi Arabian case study," Energy, Elsevier, vol. 238(PA).
    19. Ascione, Fabrizio & Bianco, Nicola & Mauro, Gerardo Maria & Vanoli, Giuseppe Peter, 2019. "A new comprehensive framework for the multi-objective optimization of building energy design: Harlequin," Applied Energy, Elsevier, vol. 241(C), pages 331-361.
    20. Attia, Shady & Canonge, Théophile & Popineau, Mathieu & Cuchet, Mathilde, 2022. "Developing a benchmark model for renovated, nearly zero-energy, terraced dwellings," Applied Energy, Elsevier, vol. 306(PB).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jsusta:v:15:y:2023:i:17:p:12793-:d:1223850. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.