IDEAS home Printed from https://ideas.repec.org/a/gam/jsusta/v15y2023i10p8121-d1148626.html
   My bibliography  Save this article

Evaluation of Geo-Environment Carrying Capacity Based on Intuitionistic Fuzzy TOPSIS Method: A Case Study of China

Author

Listed:
  • Yuanmin Wang

    (College of Management Science, Chengdu University of Technology, Chengdu 610059, China
    Institute of Artificial Intelligence, Leshan Vocational and Technical College, Leshan 614000, China)

  • Mingkang Yuan

    (College of Management Science, Chengdu University of Technology, Chengdu 610059, China)

  • Xiaofeng Zhou

    (College of Management Science, Chengdu University of Technology, Chengdu 610059, China)

  • Xiaobing Qu

    (College of Management Science, Chengdu University of Technology, Chengdu 610059, China)

Abstract

The resource environment is a fundamental prerequisite for the construction of ecological civilization and the realization of sustainable development goals. It is also a core guarantee for human production activities. Conducting an evaluation of regional geo-environmental carrying capacity has significant practical importance for achieving sustainable development in the region. However, the existing evaluation methods for geo-environmental carrying capacity fail to effectively integrate multi-source data, resulting in an incomplete reflection of the level of regional geological carrying capacity. To address this issue, this study introduces the intuitionistic fuzzy multi-attribute decision-making method into the geo-environmental carrying capacity evaluation, according to the unique topographic and geomorphological characteristics of the region. A complete analysis framework is established, which integrates the intuitionistic fuzzy and TOPSIS models to classify the geo-environmental carrying capacity evaluation into five grades: high, relatively high, medium, relatively poor, and poor. Using Meishan, China as an example, the region is divided into 33 geomorphological units based on its geographical features. The results show that: (a) the percentage of natural units with high carrying capacity is 17.27%, that of relatively high natural units is 14.07%, that of medium natural units is 31.70%, that of relatively poor natural units is 27.51%, and that of poor natural units is 9.45%; (b) the geo-environmental carrying capacity exhibits spatial differences and uneven distribution. Furthermore, the average annual rainfall and degree of karst development are the main factors affecting the geo-environmental carrying capacity. These research results and findings can provide technical support for urban planning, regional sustainable development, and ecological environmental protection.

Suggested Citation

  • Yuanmin Wang & Mingkang Yuan & Xiaofeng Zhou & Xiaobing Qu, 2023. "Evaluation of Geo-Environment Carrying Capacity Based on Intuitionistic Fuzzy TOPSIS Method: A Case Study of China," Sustainability, MDPI, vol. 15(10), pages 1-21, May.
  • Handle: RePEc:gam:jsusta:v:15:y:2023:i:10:p:8121-:d:1148626
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2071-1050/15/10/8121/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2071-1050/15/10/8121/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Lin, Song-Shun & Shen, Shui-Long & Zhou, Annan & Xu, Ye-Shuang, 2021. "Novel model for risk identification during karst excavation," Reliability Engineering and System Safety, Elsevier, vol. 209(C).
    2. Lei, Kampeng & Zhou, Shaoqi, 2012. "Per capita resource consumption and resource carrying capacity: A comparison of the sustainability of 17 mainstream countries," Energy Policy, Elsevier, vol. 42(C), pages 603-612.
    3. Majid Ebrahimi & Hamid Nejadsoleymani & Mohammad Reza Mansouri Daneshvar, 2019. "Land suitability map and ecological carrying capacity for the recognition of touristic zones in the Kalat region, Iran: a multi-criteria analysis based on AHP and GIS," Asia-Pacific Journal of Regional Science, Springer, vol. 3(3), pages 697-718, October.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Lou, Bo & Ulgiati, Sergio, 2013. "Identifying the environmental support and constraints to the Chinese economic growth—An application of the Emergy Accounting method," Energy Policy, Elsevier, vol. 55(C), pages 217-233.
    2. Giannetti, B.F. & Demétrio, J.F.C. & Bonilla, S.H. & Agostinho, F. & Almeida, C.M.V.B., 2013. "Emergy diagnosis and reflections towards Brazilian sustainable development," Energy Policy, Elsevier, vol. 63(C), pages 1002-1012.
    3. Xiaotong Xie & Xiaoshun Li & Weikang He, 2020. "A Land Space Development Zoning Method Based on Resource–Environmental Carrying Capacity: A Case Study of Henan, China," IJERPH, MDPI, vol. 17(3), pages 1-19, February.
    4. Liu, Xinyu & Liu, Gengyuan & Yang, Zhifeng & Chen, Bin & Ulgiati, Sergio, 2016. "Comparing national environmental and economic performances through emergy sustainability indicators: Moving environmental ethics beyond anthropocentrism toward ecocentrism," Renewable and Sustainable Energy Reviews, Elsevier, vol. 58(C), pages 1532-1542.
    5. Shuai Tong & Xiang Ji & Yun Chu & Tianlong Liu & Fengyu Wang, 2023. "Spatio-Temporal Analysis about Resource and Environmental Carrying Capacity (RECC) of Mining Cities in Coal-Concentrated Areas: A Case Study of Huaihai Economic Zone in China," Sustainability, MDPI, vol. 15(2), pages 1-19, January.
    6. Li, Bo & Zhang, Qiling & Yang, Shengmei & Tian, Yaling & Li, Zhi, 2023. "Identification of failure modes and paths of reservoir dams under explosion loads," Reliability Engineering and System Safety, Elsevier, vol. 229(C).
    7. Shen, Shui-Long & Lin, Song-Shun & Zhou, Annan, 2023. "A cloud model-based approach for risk analysis of excavation system," Reliability Engineering and System Safety, Elsevier, vol. 231(C).
    8. Gengyuan Liu & Mark T. Brown & Marco Casazza, 2017. "Enhancing the Sustainability Narrative through a Deeper Understanding of Sustainable Development Indicators," Sustainability, MDPI, vol. 9(6), pages 1-19, June.
    9. Takahashi, Tomoki & Sato, Toru, 2015. "Inclusive environmental impact assessment indices with consideration of public acceptance: Application to power generation technologies in Japan," Applied Energy, Elsevier, vol. 144(C), pages 64-72.
    10. Wang, Ran & Cheng, Jinhua & Zhu, Yali & Xiong, Weiwei, 2016. "Research on diversity of mineral resources carrying capacity in Chinese mining cities," Resources Policy, Elsevier, vol. 47(C), pages 108-114.
    11. Wang, Ran & Cheng, Jinhua & Zhu, Yali & Lu, Peixin, 2017. "Evaluation on the coupling coordination of resources and environment carrying capacity in Chinese mining economic zones," Resources Policy, Elsevier, vol. 53(C), pages 20-25.
    12. Lingyun, Guo & Markus, Niffenegger & Jing, Zhou, 2022. "A novel procedure to evaluate the performance of failure assessment models," Reliability Engineering and System Safety, Elsevier, vol. 226(C).
    13. Yu, Xiaoman & Geng, Yong & Dong, Huijuan & Ulgiati, Sergio & Liu, Zhe & Liu, Zuoxi & Ma, Zhixiao & Tian, Xu & Sun, Lu, 2016. "Sustainability assessment of one industrial region: A combined method of emergy analysis and IPAT (Human Impact Population Affluence Technology)," Energy, Elsevier, vol. 107(C), pages 818-830.
    14. Bo Wu & Yu Wei & Guowang Meng & Shixiang Xu & Qinshan Wang & Dianbin Cao & Chenxu Zhao, 2023. "Multi-Source Monitoring Data Fusion Comprehensive Evaluation Method for the Safety Status of Deep Foundation Pit," Sustainability, MDPI, vol. 15(15), pages 1-18, August.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jsusta:v:15:y:2023:i:10:p:8121-:d:1148626. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.